
Feuille d’exercices no 19 MP
Endomorphismes d’espaces euclidiens 2025-2026

(⋆) Exercice 1
Montrer que si A est une matrice symétrique de Mn(R) vérifiant Ak = In pour un certain entier k ⩾ 2,
alors A2 = In. Que dire de la matrice A si k est impair ?

(⋆⋆) Exercice 2 Soit A = (ai,j) ∈ Mn(R). Montrer que si A est symétrique alors
n∑

i=1

n∑
j=1

a2
i,j =

n∑
k=1

λ2
k

avec λ1, . . . , λn les valeurs propres (non nécessairement distinctes) de A.

(⋆) Exercice 3 Soit A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


1. Montrer que A est diagonalisable.
2. Donner les valeurs propres et espaces propres de A.
3. Soit B une base de vecteurs propres de A. Donner une base orthonormée constituée de vecteurs

propres de A (on pourra s’aider du procédé d’orthonormalisation de Schmidt). Écrire alors la diago-
nalisation de A avec une matrice de passage orthogonale.

(⋆⋆) Exercice 4
1. Soit A ∈ Mn(R) une matrice symétrique dont toutes les valeurs propres sont positives. Montrer qu’il

existe une matrice symétrique S de valeurs propres positives telle que A = S2.
2. Soit A ∈ Mn(R) une matrice inversible. En utilisant la matrice A⊤ A et la question 1., montrer

qu’il existe une matrice orthogonale R et une matrice symétrique S de valeurs propres strictement
positives telles que A = RS.

(⋆) Exercice 5 Soit A une matrice symétrique réelle d’ordre n, vérifiant A3 = −4A. Montrer que A est
la matrice nulle.

(⋆) Exercice 6 Soit A ∈ Mn(R) et soit B = A⊤A. On munit Mn,1(R) de son produit scalaire canonique.
Hormis 4. et 5., les questions sont indépendantes.

1. Montrer que B est symétrique.
2. Montrer que Sp(B) ⊂ R+.
3. Montrer que B = 0 si et seulement si A = 0.
4. Montrer que kerA = kerB.
5. En déduire que rg(A) = rg(B).

(⋆) Exercice 7
1. E = Rn muni du produit scalaire canonique et a est un vecteur unitaire de E. f est l’endomorphisme

de E défini par :
∀x ∈ E, f(x) = x+ 2⟨x, a⟩a

Montrer que f est un endomorphisme autoadjoint de E.
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2. E = Mn(R) muni du produit scalaire ⟨A,B⟩ = Tr(A⊤B). f est l’endomorphisme de E défini par :

∀M ∈ E, f(M) = M⊤

Montrer que f est un endomorphisme autoadjoint de E.

3. E = Rn[X] muni du produit scalaire ⟨P,Q⟩ =
1∫

−1
P (t)Q(t) dt. f est l’endomorphisme de E défini par :

f(P ) = 2XP ′ + (X2 − 1)P ′′

Montrer que f est un endomorphisme autoadjoint de E.

(⋆⋆) Exercice 8 Soient a et b vecteurs non nuls d’un espace euclidien E. On considère l’endomorphisme
f de E défini par :

∀x ∈ E, f(x) = x+ ⟨x, a⟩b

Montrer que f est un endomorphisme autoadjoint si et seulement si la famille (a, b) est liée.

(⋆) Exercice 9 Soient E un espace euclidien, f et g deux endomorphismes de E qui commutent. On
considère une base orthonormée de E, et on note S la matrice de f dans cette base et T la matrice de g
dans cette base. On suppose enfin que S est symétrique et que T est antisymétrique.

1. Montrer que ∀x ∈ E, f(x) et g(x) sont orthogonaux.
2. Montrer que ∀x ∈ E, ∥(f − g)(x)∥ = ∥(f + g)(x)∥.

(⋆⋆) Exercice 10 Soit n ∈ N∗. On note En le R-espace vectoriel des polynômes à coefficients réels et de
degré inférieur ou égal à n.

1. (a) Montrer que pour tous P et Q éléments de En, l’intégrale
1∫

−1

P (t)Q(t)
√1 − t

1 + t
dt est convergente.

(b) Montrer que l’application φ : (P,Q) 7→ ⟨P,Q⟩ =
1∫

−1

P (t)Q(t)
√

1 − t

1 + t
dt est un produit scalaire

sur En.
2. Soit ψ définie sur En par ψ(P ) = (X2 − 1)P ′′ + (2X + 1)P ′ où P ′ et P ′′ désignent les deux premiers

polynômes dérivés du polynôme P .
(a) Montrer que ψ est un endomorphisme de En.
(b) ψ est-il bijectif ?
(c) Montrer que ψ est diagonalisable.

3. (a) Montrer que pour tous P et Q de En : ⟨ψ(P ), Q⟩ =
1∫

−1

(1 − t)3/2(1 + t)1/2P ′(t)Q′(t) dt.

(b) Retrouver ainsi le fait que ψ est diagonalisable.

(⋆⋆) Exercice 11 Soit n ∈ N∗. On considère l’espace euclidien Rn muni de son produit scalaire canonique
⟨, ⟩ et de sa norme associée ∥.∥. Soit f un endomorphisme autoadjoint de Rn.
On pose ρ = max{|λ|, λ ∈ Sp(f)}. Montrer que ρ = ∥f∥op.

(⋆⋆) Exercice 12 Pour n ∈ N, on note Rn[X] l’espace vectoriel des polynômes à coefficients réels de
degré inférieur ou égal à n. Soit fn l’application définie sur Rn[X] par :

∀P ∈ Rn[X], fn(P )(X) = (X2 − 1)
2 P ′′(X) +XP ′(X) − P (X)
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1. Montrer que fn est un endomorphisme de Rn[X].
2. On suppose dans cette question que n = 3.

(a) Déterminer la matrice M3 de f3 dans la base canonique de R3[X].
(b) Déterminer une base de ker f3 et une base de Im f3. Ces espaces sont-ils supplémentaires dans

R3[X] ?
(c) La matrice M3 est-elle diagonalisable ?

3. Pour tout (P,Q) ∈ (Rn[X])2, on pose ⟨P,Q⟩ =
1∫

−1
P (t)Q(t) dt.

(a) Vérifier que l’on définit ainsi un produit scalaire sur Rn[X].
(b) Montrer que : ∀(P,Q) ∈ (Rn[X])2, ⟨fn(P ), Q⟩ = ⟨P, fn(Q)⟩. Qu’en déduit-on ?

4. On continue avec le produit scalaire de la question précédente. Si k ∈ J0, nK et P ∈ Rn[X], on note
pk(P ) la projection orthogonale de P sur Rk[X].
Soit (T0, T1, . . . , Tn) la famille définie par : T0 = 1 et pour tout k ∈ J1, nK, Tk = Xk − pk−1(Xk).
(a) Montrer que (T0, T1, . . . , Tn) est une base orthogonale de Rn[X].
(b) Montrer que pour tout k ∈ J0, nK, Tk est vecteur propre de fn et préciser la valeur propre associée.

(⋆) Exercice 13 Soit E un espace euclidien et f un endomorphisme de E tel que pour tout vecteur x
de E, ⟨f(x), x⟩ = 0.

1. Montrer que pour tous x et y de E, ⟨f(x), y⟩ = −⟨x, f(y)⟩.
2. Montrer que ker f = (Im f)⊥.
3. Montrer que si λ ∈ R est valeur propre de f , alors λ = 0. f est-il diagonalisable ?
4. Montrer que la matrice de f dans toute base orthonormée de E est antisymétrique.
5. Soit u un automorphisme autoadjoint de E tel que f ◦ u = u ◦ f .

(a) Montrer que ∀x ∈ E, ⟨f(x), u(x)⟩ = 0.
(b) En déduire que f + u est un automorphisme de E.

(⋆⋆) Exercice 14 Soit E un espace euclidien de dimension n ⩾ 1 muni d’un produit scalaire ⟨, ⟩.
On dit qu’un endomorphisme φ est antisymétrique si : ∀(x, y) ∈ E2, ⟨φ(x), y⟩ = −⟨x, φ(y)⟩.
Dans tout l’exercice, on considère un endomorphisme φ de E antisymétrique.

1. Établir les propriétés suivantes :
(a) Pour tout x de E, on a ⟨x, φ(x)⟩ = 0.
(b) Imφ = (kerφ)⊥.
(c) Soit F un sous-espace vectoriel de E. Montrer que si F est stable par φ, alors F⊥ est stable par

φ.
(d) kerφ = ker(φ2).
(e) Le spectre de φ est soit vide soit réduit à {0}.

2. Montrer que toutes les valeurs propres de φ2 sont négatives ou nulles.
3. Soit :

• F un sous-espace vectoriel de E de dimension p ⩾ 2, p pair ;
• α un réel strictement positif ;
• u un endomorphisme antisymétrique de F tel que u2 = −α2 IdF , où IdF est l’endomorphisme

identité de F .

(a) On suppose que p = 2. Établir l’existence d’une base orthonormale de F dans laquelle la matrice

Aα de u est donnée par Aα =
(

0 −α
α 0

)
.
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(b) À l’aide d’un raisonnement par récurrence sur p, montrer qu’il existe une base de F dans laquelle

la matrice Bα de u est donnée par Bα =


Aα (0)
(0) Aα

...
(0) . . . (0)

(0) Aα

.

(⋆) Exercice 15 E = R3. On considère f endomorphisme de R3 dont la matrice dans la base canonique
de R3 est A (resp. B, C).

A = 1
3

1 2 2
2 1 −2
2 −2 1

 B = 1
2

 1 −
√

2 1√
2 0 −

√
2

1
√

2 1

 C = 1
9

−8 4 1
4 7 4
1 4 −8


1. Expliquer pourquoi il existe une base orthonormée de R3 dans laquelle la matrice de f est de l’une

des formes suivantes :

±I3,

1 0 0
0 −1 0
0 0 −1

 ,
1 0 0

0 1 0
0 0 −1

 ,
±1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 avec θ ̸≡ 0[π]

2. Préciser si f correspond à : une rotation autour d’un axe (préciser lequel), une réflexion (préciser le
plan invariant), ou la composée d’une rotation et d’une réflexion.

(⋆) Exercice 16 Déterminer les matrices de On(R) qui sont diagonalisables sur R.

(⋆) Exercice 17 Soit A ∈ Mn(R). On considère S = 1
2(A+A⊤ ) et α et β les plus petite et plus grande

valeurs propres de S.
1. Pour X ∈ Mn,1(R), montrer que X⊤ SX = X⊤AX.
2. En déduire que αX⊤X ⩽ X⊤AX ⩽ βX⊤X.
3. Montrer que Sp(A) ⊂ [α, β].

(⋆⋆) Exercice 18 Soient v1, . . . , vn des vecteurs d’un espace euclidien E. On note G la matrice de
coefficients gi,j = ⟨vi, vj⟩.

1. Montrer que G ∈ S+
n (R).

2. Montrer que G ∈ S++
n (R) si, et seulement si, G est inversible.

3. Montrer que G est inversible si, et seulement si, la famille (v1, . . . , vn) est libre.

(⋆⋆⋆) Exercice 19 E = Rn[X] pour n ∈ N.
1. Montrer l’existence et l’unicité d’un polynôme A de E tel que

pour tout P de E, P (0) =
1∫

0

A(t)P (t) dt

2. Montrer que A est de degré égal à n.

(⋆) Exercice 20 Montrer que toutes les matrices de On(R) sont diagonalisables sur C.

(⋆) Exercice 21 Déterminer les isométries d’un espace euclidien qui sont aussi des endomorphismes
autoadjoints.
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(⋆⋆) Exercice 22 Soit φ une forme linéaire sur Mn(R). Montrer qu’il existe une unique matrice
A ∈ Mn(R) telle que :

∀M ∈ Mn(R), φ(M) = Tr(AM)

(⋆) Exercice 23 Soit E un espace euclidien et u ∈ L (E). Montrer que ker(u∗ ◦ u) = keru et
Im(u∗ ◦ u) = Im u∗.

(⋆⋆⋆) Exercice 24 Soient f et g des endomorphismes d’un espace euclidien E tels que f∗ ◦ f = g∗ ◦ g.
1. Montrer que ker f = ker g.
2. Montrer qu’il existe u ∈ O(E) tel que g = u ◦ f . Indication : considérer (f(w1), . . . , f(wr)) une base

orthonormée de Im f et montrer que (g(w1), . . . , g(wr)) est une famille orthonormée de E.

(⋆⋆) Exercice 25 Soit p ∈ L(E) un projecteur d’un espace euclidien E.
Montrer que p est une projection orthogonale si, et seulement si, pour tout x de E, ∥p(x)∥ ⩽ ∥x∥.
Indication : considérer les vecteurs x+ ty avec y ∈ ker p et x ∈ Im p.

(⋆) Exercice 26 Soit A =
(
r s
s t

)
∈ S2(R). Montrer que : A ∈ S++

2 (R) ⇔
(
r > 0 et rt− s2 > 0

)
.

(⋆⋆) Exercice 27 Soient u et v des isométries vectorielles d’un espace euclidien de dimension supérieure
ou égale à 1, et t ∈]0, 1[ tel que (1 − t)u+ tv ∈ O(E). Montrer que u = v.

(⋆⋆) Exercice 28 Soit M ∈ Mn(R) telle que MM⊤M = In. Montrer que M est inversible et symétrique,
puis que M = In.

(⋆⋆⋆) Exercice 29 Soit A ∈ S+
n (R). On va montrer qu’il existe une unique matrice B ∈ S+

n (R) telle que
B2 = A.

1. Montrer l’existence d’une telle matrice B.
2. Soit B ∈ S+

n (R) telle que B2 = A. Établir que, pour tout λ ∈ R+,

ker(B −
√
λIn) = ker(A− λIn)

3. Justifier l’unicité de B.

(⋆⋆) Exercice 30 Soit f ∈ L (E) où E est un espace euclidien. Montrer que ∥f∗∥op = ∥f∥op.

(⋆) Exercice 31 Soit f ∈ L (E) où E est un espace euclidien. On suppose que Im f ⊂ ker f . Montrer
que ker(f + f∗) = ker f ∩ ker f∗.

(⋆) Exercice 32 On munit Mn(R) du produit scalaire usuel ⟨N1, N2⟩ = Tr(N1
⊤N2). Soit A une matrice

de Mn(R). Déterminer l’adjoint de f : M 7→ AM .

(⋆) Exercice 33 Soit f ∈ L (E) où E est un espace euclidien. Établir la liste de propriétés suivantes :

1. Tr(f) = Tr(f∗)
2. det(f) = det(f∗)
3. χf = χf∗

4. Sp(f) = Sp(f∗)
5. pour tout λ ∈ Sp(f), dimEλ(f) = dimEλ(f∗).
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Banque épreuve orale CCINP

Algèbre : 63, 66, 78.

Deux sujets de concours pour vous entraîner

(⋆⋆) Exercice 34 (type CCINP)
Préliminaire : (facultatif) Montrer que φ : (A,B) 7→ Tr(A⊤B) est un produit scalaire sur Mn(R).

On note N la norme associée à ce produit scalaire. Soient A,B ∈ Mn(R). Le but de l’exercice est de
prouver que N est sous-multiplicative :

N(AB) ⩽ N(A)N(B)

1. Justifier l’existence de P ∈ Mn(R) et D ∈ Mn(R) telles que :

P⊤ (A⊤A)P = D

où P est une matrice orthogonale et D une matrice diagonale.
On notera par la suite λi le coefficient di,i de la matrice D = (di,j)1⩽i,j⩽n.

2. Soit λ une valeur propre de A⊤A et X un vecteur propre associé.
En calculant X⊤A⊤AX de deux manières différentes, montrer que λ ⩾ 0.

3. On pose S = P⊤ (BB⊤ )P = (si,j)1⩽i,j⩽n. Montrer que

[N(A)]2 = Tr(D), [N(B)]2 = Tr(S), [N(AB)]2 = Tr(SD)

4. Montrer que : Tr(SD) =
n∑

i=1
λisi,i .

5. On note Ei le i-ième vecteur de la base canonique de Mn,1(R), espace des matrices à n lignes et une
colonne, à coefficients réels. Montrer que :

Ei
⊤ SEi = ∥B⊤ PEi∥2

où ∥.∥ désigne la norme euclidienne canonique de Mn,1(R), puis calculer Ei
⊤ SEi en fonction des

coefficients de S.
Qu’en déduit-on, pour i entier compris entre 1 et n, sur le signe de si,i ?

6. Montrer que :
n∑

i=1
λisi,i ⩽

( n∑
i=1

λi

)( n∑
i=1

si,i

)
puis conclure que : N(AB) ⩽ N(A)N(B).

(⋆⋆) Exercice 35 (e3a 2024)
Soient n ∈ N∗ et A ∈ Mn(R) tel que A⊤ = 3A2 −A− In où A⊤ désigne la matrice transposée de la matrice
A.

1. Démontrer que la matrice B = 3A3 −A2 −A est symétrique réelle.
2. Montrer que les valeurs propres de B sont réelles, positives ou nulles.

On pourra étudier le signe de Y ⊤BY pour un vecteur Y de Rn.

3. Montrer que l’on a : A = 3
(
A⊤
)2

−A⊤ − In.

4. En déduire que le polynôme P (X) =
(
3X2 −X − 1

)2 −X2 est annulateur de la matrice A.
5. Déterminer un polynôme unitaire annulateur de A⊤.
6. Factoriser P en un produit de polynômes irréductibles dans R[X].
7. La matrice A est-elle inversible ?
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8. Établir que la matrice A est diagonalisable et préciser ses valeurs propres possibles.
9. Soit λ une valeur propre de A et V un vecteur propre associé. Montrer que V est aussi vecteur propre

de A⊤.
10. On note α1 = 1, α2, α3, α4 les racines du polynôme P .

On appelle L = (L1, L2, L3, L4) la famille des polynômes de Lagrange associés à cette famille de
scalaires, c’est-à-dire les polynômes (Li)i∈J1,4K de R3[X], espace vectoriel des polynômes de degré
inférieur ou égal à 3 à coefficients réels, tels que :

∀(i, j) ∈ J1, 4K2, Li (αj) = δi,j où δi,j =
{

0 si j = i
1 sinon (symbole de Kronecker).

(a) Déterminer L1 sous forme d’un produit de polynômes irréductibles de R[X].
(b) Vérifier que L est une base de R3[X].
(c) Soit R ∈ R3[X]. Déterminer les coordonnées du polynôme R dans la base L .

11. Étude des puissances de A

(a) Soit k ∈ N∗.

i. Exprimer le reste de la division euclidienne de Xk par le polynôme P dans la base L .
ii. En déduire une expression de Ak.

(b) Démontrer que la suite
(
Ak
)

k∈N∗
converge vers une matrice de projection.

Exprimer cette matrice à l’aide de la matrice A et des (Li)i∈J1,4K.
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