
Feuille d’exercices no 18 MP
Espaces préhilbertiens réels 2025-2026
Révisions

Produits scalaires, normes, orthogonalité

(⋆⋆) Exercice 1
Soient a1, a2, . . . , an+1 des réels distincts deux à deux et E = Rn[X].

1. Montrer qu’on définit un produit scalaire sur E en posant : ∀(P, Q) ∈ E2, φ(P, Q) =
n+1∑
k=1

P (ak)Q(ak).

2. Pour i ∈ J1, n + 1K, on pose :
Li(X) =

∏
k∈J1,n+1K, k ̸=i

X − ak

ai − ak

(a) Pour (i, j) ∈ J1, n + 1K2, calculer Li(aj).
(b) En déduire que (Li)1⩽i⩽n+1 est une base orthonormée de E.

(⋆) Exercice 2 R4 est muni du produit scalaire canonique. Pour chacun des sous-espaces suivants, donner
une base de F ⊥ :

1. F = Vect ((1, 2, 0, 1), (0, 1, 2, 3))
2. F = Vect ((3, 2, 0, 4), (1, 0, 0, −2), (1, −1, −1, 1))
3. F = {(x, y, z, t) ∈ R4 | 2x + 3y − z = 0}
4. F = {(x, y, z, t) ∈ R4 | x + y − z = 0 et x + t = 0}

(⋆) Exercice 3 Dans R2[X], on considère le produit scalaire donné par :

⟨P, Q⟩ = P (−1)Q(−1) + P (0)Q(0) + P (1)Q(1)

et les sous-espaces vectoriels F = Vect(1 + X, 1 − X2) et G = Vect(X − X2).
Montrer que G = F ⊥ et que F = G⊥.

(⋆⋆) Exercice 4 Soient F et G deux sous-espaces vectoriels d’un espace vectoriel euclidien E.
1. Montrer que (F + G)⊥ = F ⊥ ∩ G⊥ et (F ∩ G)⊥ = F ⊥ + G⊥.
2. On suppose que F ∩ G⊥ = {0} et que dim F = dim G. Montrer que F ⊥ ∩ G = {0}.

(⋆⋆) Exercice 5 Soit E un espace vectoriel muni d’un produit scalaire et de la norme ∥.∥ associée, et x
et y vecteurs de E. Montrer l’équivalence :

(x et y sont orthogonaux) ⇐⇒ (∀λ ∈ R, ∥x∥ ⩽ ∥x + λy∥)

(⋆) Exercice 6 Soit E un espace euclidien et a un vecteur de norme 1. On considère :

fλ : x 7→ x + λ⟨a, x⟩a

Montrer que fλ est bijective si et seulement si λ ̸= −1.

(⋆) Exercice 7 Soit E un espace vectoriel euclidien, et E1 et E2 des sous-espaces vectoriels de E.
Montrer :

E = E1 ⊕ E2 ⇒ E = E⊥
1 ⊕ E⊥
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Projetés orthogonaux

(⋆) Exercice 8 E = R3 muni du produit scalaire canonique. pF désigne la projection orthogonale sur F .
1. Calculer pF (1, 1, 1) lorsque F = {(x, y, z) ∈ R3, 2x + 3y − z = 0}.
2. Calculer pF (x, y, z) lorsque F = Vect(u), où u = (−1, 3, 4).

(⋆) Exercice 9 F = Vect ((1, −2, 1)) et G = Vect ((1, 0, −1), (1, 1, 1)).
1. Montrer que F = G⊥.

On note p la projection orthogonale sur F et q la projection orthogonale sur G.
2. Exprimer, pour v ∈ R3, p(v) et q(v).

(⋆⋆) Exercice 10 On munit R4 de sa structure euclidienne canonique. On note H le sous-espace vectoriel
engendré par u, v et w, où

u = (1, 1, 0, 1) v = (1, 1, 1, 0) w = (1, 1, −2, 1)

1. Déterminer la dimension de H et une base de H⊥.
2. On note p la projection orthogonale sur H (projection sur H parallèlement à H⊥). Déterminer la

matrice de p dans la base canonique de R4.

Inégalités

(⋆) Exercice 11 Soient x et y des vecteurs d’un espace vectoriel muni d’un produit scalaire. À quelle
condition nécessaire et suffisante la matrice suivante est-elle inversible ?

M =
(

∥x∥2 ⟨x, y⟩
⟨x, y⟩ ∥y∥2

)

(⋆) Exercice 12 À l’aide de l’inégalité de Cauchy-Schwarz, montrer que pour tout entier n ⩾ 2 :
n∑

k=1
k
√

k ⩽
n(n + 1)

√
2n + 1

2
√

3

(⋆⋆) Exercice 13 Soient x, y, z réels vérifiant 2x2 + y2 + 5z2 ⩽ 1. Montrer que (x + y + z)2 ⩽ 17
10 .

(⋆) Exercice 14 Soient f et g deux fonctions continues sur [a, b] et à valeurs dans R. Montrer que :

b∫
a

|f(t)g(t)| dt ⩽

√√√√√ b∫
a

f2(t) dt

√√√√√ b∫
a

g2(t) dt

(⋆) Exercice 15
1. (a) Montrer que pour tout (x1, x2, . . . , xn) ∈ Rn et tout (y1, y2, . . . , yn) ∈ Rn :(

n∑
i=1

xiyi

)2

⩽

(
n∑

i=1
x2

i

) (
n∑

i=1
y2

i

)

(b) Application : montrer que si X est une variable aléatoire discrète finie à valeurs strictement
positives, alors E

( 1
X

)
⩾

1
E(X) .
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2. (a) Montrer que pour f et g fonctions continues sur [0, 1], on a : 1∫
0

f(t)g(t) dt

2

⩽

 1∫
0

[f(t)]2 dt

  1∫
0

[g(t)]2 dt


(b) Application : soit f une fonction continue et strictement positive sur [0, 1]. Montrer que :

1∫
0

1
f(t) dt ⩾

1
1∫

0

f(t) dt

(⋆) Exercice 16 Soit n ∈ N∗ et (x1, x2, . . . , xn) ∈ (R+∗)n tel que
n∑

i=1
xi = 1.

1. Montrer que
n∑

k=1

1
xk

⩾ n2.

2. Déterminer les vecteurs x de (R+∗)n tels que
n∑

i=1
xi = 1 pour lesquels

n∑
k=1

1
xk

= n2.

(⋆⋆) Exercice 17 Soit E l’ensemble des suites réelles telles que
∑

x2
n converge.

1. Démontrer que E est un R-espace vectoriel.

2. Démontrer qu’en posant, pour toute suite (xn) et (yn) de E, ⟨(xn), (yn)⟩ =
+∞∑
n=1

xnyn, on définit un

produit scalaire sur E.
E est-il un espace vectoriel euclidien (on ne demande pas de démonstration) ?

3. Montrer que pour (xn) et (yn) éléments de E, on a :(+∞∑
n=1

xnyn

)2

⩽

(+∞∑
n=1

x2
n

) (+∞∑
n=1

y2
n

)

(⋆) Exercice 18 Pour x1, x2, . . . , xn réels, en utilisant l’inégalité de Cauchy-Schwarz, montrer l’inégalité :

(x1 + x2 + · · · + xn)2 ⩽ n
n∑

i=1
x2

i

(⋆⋆) Exercice 19 Soit E un espace vectoriel muni d’un produit scalaire ⟨. | .⟩ et d’une norme ∥ . ∥.

1. Montrer que pour tout couple (x, y) de vecteurs de E, on a : ⟨x|y⟩ ⩽ 1
2
(
∥x∥2 + ∥y∥2

)
.

2. Montrer, en développant la norme à l’aide du produit scalaire, que pour tous x1, x2, . . . , xn vecteurs
de E, on a :

∥x1 + x2 + · · · + xn∥2 ⩽ n
n∑

i=1
∥xi∥2

Procédé d’orthonormalisation de Schmidt

(⋆) Exercice 20 Dans l’espace euclidien E = R3 muni du produit scalaire canonique, orthonormaliser
la base (v1, v2, v3) où :

v1 = (1, 1, 1), v2 = (1, 1, 0), v3 = (1, 0, 0)

(⋆) Exercice 21 Soit E = R2[X]. Pour P et Q appartenant à E, on pose

φ(P, Q) =
π∫

0

(sin t) P (t)Q(t) dt
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1. Montrer que φ est un produit scalaire sur E.
2. Par le procédé d’orthonormalisation de Schmidt, donner une base orthonormée de

F = Vect (1, X).

Divers

(⋆⋆) Exercice 22 Soit E = C([0, 1],R) l’espace vectoriel des fonctions réelles définies et continues sur
[0, 1] muni du produit scalaire :

⟨f, g⟩ =
1∫

0

f(t)g(t) dt

1. On considère l’application u définie sur E par :

∀f ∈ E, ∀x ∈ [0, 1], u(f)(x) =
x∫

0

f(t) dt

Montrer que u est un endomorphisme de E. Que représente u(f) ?
2. Déterminer un endomorphisme v de E qui vérifie :

∀(f, g) ∈ E2, ⟨u(f), g⟩ = ⟨f, v(g)⟩

On pourra introduire une primitive bien choisie de la fonction g. Vérifier que v est unique.
3. Montrer que les valeurs propres de l’endomorphisme u ◦ v sont strictement positives.

(⋆⋆⋆) Exercice 23 R[X] est muni du produit scalaire : ⟨P, Q⟩ =
1∫

−1
P (t)Q(t) dt.

1. Montrer par récurrence qu’il existe une unique suite (Pn)n⩾0 de polynômes deux à deux orthogonaux,
avec Pn de degré n et de coefficient dominant 1.

2. Montrer que pour n ⩾ 2, Pn+1 − XPn est dans (Rn−2[X])⊥.
3. En déduire qu’il existe (λn, µn) ∈ R2 tel que : Pn+1 = XPn + λnPn−1 + µnPn.

(⋆⋆) Exercice 24 Soient a et b deux réels tels que a < b. Soit n ∈ N∗.
1. Montrer que l’on définit un produit scalaire sur R[X] par :

⟨P, Q⟩ =
b∫

a

P (t)Q(t)f(t) dt

où f est une fonction continue strictement positive sur [a, b].
2. On note (Pk)0⩽k⩽n l’orthonormalisée de Schmidt de la base canonique (Xk)0⩽k⩽n de Rn[X]. Que

peut-on dire de deg Pk, pour tout k de J0, nK ?
3. En considérant le produit scalaire ⟨XPp, Pq⟩, montrer que XPp appartient à Vect (Pp−1, Pp, Pp+1)

pour tout entier naturel p non nul.
4. En déduire que la suite (Pn)n∈N vérifie une relation de récurrence de la forme :

anPn(X) + (bn + X)Pn+1(X) + cnPn+2(X) = 0

où les trois suites (an), (bn) et (cn) sont des suites de réels.
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(⋆) Exercice 25 Soient E un espace vectoriel euclidien et (ei)1⩽i⩽n une famille de n vecteurs unitaires
(c’est-à-dire de norme 1) telle que :

∀x ∈ E,
n∑

k=1
⟨x, ek⟩2 = ∥x∥2

1. Montrer que les vecteurs ei sont orthogonaux deux à deux.
2. On note F le sous-espace vectoriel engendré par la famille (ei)1⩽i⩽n .

(a) Montrer que F ⊥ = {0}.
(b) Qu’en déduit-on pour F ?

3. En déduire que la famille (ei)1⩽i⩽n est une base orthonormée de E.

(⋆⋆) Exercice 26 Dans cet exercice, n désigne un entier naturel supérieur ou égal à deux, et E est le
R-espace vectoriel Rn, muni de son produit scalaire canonique ⟨., .⟩ et de la norme associée ∥.∥.
On note Bc la base canonique (e1, e2, . . . , en) de Rn, qui est orthonormée pour ce produit scalaire.
On note f l’endomorphisme de E tel que pour tout i ∈ J1, nK, f(ei) = e1 + e2 + · · · + en.
Soient n réels a1, a2, . . . , an ; on note m = min(a1, a2, . . . , an) et on suppose dans cet exercice que m > n.
On note d l’endomorphisme de E tel que pour tout i ∈ J1, nK, d(ei) = aiei.
Enfin, on note g l’endomorphisme f + d de E.

1. (a) Montrer que w = e1 + e2 + · · · + en est un vecteur propre de f . À quelle valeur propre est-il
associé ?

(b) Déterminer Im f et en préciser une base orthonormée.
(c) Prouver que ker f est le sous-espace vectoriel de E de base B′ = (e2 − e1, e3 − e1, . . . , en − e1).
(d) Justifier que Im f = (ker f)⊥.
(e) En déduire qu’il existe une base orthonormée de E formée de vecteurs propres de f , et que pour

tout vecteur u de E, on a ∥f(u)∥ ⩽ n∥u∥.

2. (a) Justifier que d est un automorphisme de E.
(b) Montrer que pour tout vecteur u de E, ∥d(u)∥ ⩾ m∥u∥ et que pour tout vecteur v de E,

∥d−1(v)∥ ⩽
1
m

∥v∥.
(c) Prouver que pour tout vecteur u non nul de E, on a ∥f(u)∥ < ∥d(u)∥.
(d) En déduire, en étudiant ker g, que g est un automorphisme de E.

3. Soit v un vecteur fixé de E. Par 2.d., il existe un unique vecteur u de E tel que g(u) = v.
On considère la suite (uk)k∈N de vecteurs de E définie par{

u0 = v

uk+1 = d−1(v) − (d−1 ◦ f)(uk) pour k ∈ N

(a) Vérifier que u = d−1(v) − (d−1 ◦ f)(u).
(b) Montrer que pour tout entier naturel k, uk+1 − u = −(d−1 ◦ f)(uk − u).
(c) En déduire que pour tout entier naturel k, ∥uk+1 − u∥ ⩽

n

m
∥uk − u∥.

Montrer finalement que lim
k→+∞

∥uk − u∥ = 0.

(⋆) Exercice 27 On considère un espace euclidien de dimension n, et des vecteurs v1, . . . , vn de norme
1 et vérifiant : pour i ̸= j, ∥vi − vj∥ = 1.

1. Calculer ⟨vi, vj⟩.
2. Montrer alors que (v1, . . . , vn) est une base de E.
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(⋆) Exercice 28 Soit E un espace vectoriel muni d’un produit scalaire ⟨., .⟩.
1. Démontrer que si u et v sont deux vecteurs de norme 1 de E, alors on a ⟨u + v, u − v⟩ = 0.
2. Soit f ∈ L(E) un endomorphisme tel que : ∀(x, y) ∈ E2, ⟨x, y⟩ = 0 ⇒ ⟨f(x), f(y)⟩ = 0.

(a) Montrer que si u et v dans E sont de norme 1, alors ∥f(u)∥ = ∥f(v)∥.
(b) En déduire qu’il existe un réel k > 0 tel que : ∀x ∈ E, ∥f(x)∥ = k∥x∥.

(⋆) Exercice 29 E est l’ensemble des fonctions de classe C1 sur [0, 1] et à valeurs dans R. Pour g et f
dans E, on pose :

⟨f, g⟩ = f(1)g(1) +
1∫

0

f ′(t)g′(t) dt

1. Montrer que ⟨., .⟩ est un produit scalaire.
2. Montrer que pour tout f ∈ E,f(1) +

1∫
0

f ′(t) dt

2

⩽ 2

f(1)2 +
1∫

0

(f ′(t))2 dt



(⋆) Exercice 30
E = C2([0, 1],R).

1. Montrer qu’on définit un produit scalaire sur E en posant : ⟨f, g⟩ =
1∫

0

(f(t)g(t) + f ′(t)g′(t)) dt.

2. On pose

F = {f ∈ E, f(0) = f(1) = 0}
G = {g ∈ E, g′′ = g}

Montrer que F et G sont supplémentaires orthogonaux.

(⋆⋆) Exercice 31 On munit Mn(R) du produit scalaire ⟨A, B⟩ = Tr(A⊤ B).
1. Établir que : ∀A ∈ Mn(R), |tr(A)| ⩽

√
n ∥A∥.

2. Démontrer que Sn(R) et An(R) sont deux sous-espaces supplémentaires orthogonaux de Mn(R).
3. On note (mi,j) 1⩽i⩽n

1⩽j⩽n
les coefficients d’une matrice M .

Montrer que pour toute matrice A = (ai,j) 1⩽i⩽n
1⩽j⩽n

de Mn(R), min
M∈Sn(R)

n∑
i=1

n∑
j=1

(ai,j −mi,j)2 existe et vaut

1
4

n∑
i=1

n∑
j=1

(ai,j − aj,i)2

(⋆⋆) Exercice 32 Calculer inf
(a,b)∈R2

1∫
0

(ex − a − bx)2 dx.

Banque épreuve orale CCINP

Analyse : 39.
Algèbre : 76, 77, 79, 80, 81, 82, 92.
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Exercice CCINP 2025

(⋆⋆) Exercice 33 On définit une suite (Pn)n∈N de R[X] en posant P0 = 1, P1 = X et pour tout entier
naturel n :

Pn+2 = 2XPn+1 − Pn

Dans les questions suivantes, n et k sont des entiers naturels.
1. Donner le degré et le coefficient dominant de Pn en fonction de n.
2. Justifier que pour tout θ ∈ R, Pn(cos θ) = cos(nθ).

Pour P et Q dans R[X], on pose :

⟨P, Q⟩ =
1∫

−1

P (t)Q(t)√
1 − t2

dt

3. Justifier la convergence de cette intégrale.
4. Démontrer que ⟨., .⟩ est un produit scalaire sur Rk[X].

5. Calculer, pour n et m entiers naturels,
π∫
0

cos(nθ) cos(mθ) dθ.

6. Donner une base orthonormale de Rk[X] pour ce produit scalaire.
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