
Feuille d’exercices no 13 MP
Séries entières 2025-2026

(⋆) Exercice 1 Montrer la convergence de la série
∑

n⩾0
(n + 1)3−n et donner sa somme.

(⋆⋆) Exercice 2 Donner le rayon de convergence des séries entières suivantes.

1.
∑

(sin n

n
) zn

2.
∑

(tan nπ

7 ) zn

3.
∑

dnzn où dn est le nombre de diviseurs positifs de n

4.
∑

anzn où an est la n-ième décimale de π.

(⋆⋆) Exercice 3 Déterminer le rayon de convergence des séries entières suivantes :

1.
∑

zn2 2.
∑

2nz2n

3.
∑ nn

n! z3n

(⋆) Exercice 4 Déterminer le rayon de convergence et calculer la somme de la série entière
∑

n⩾0
cos(nπ

2 )xn.

(⋆) à (⋆⋆⋆) Exercice 5 Déterminer le rayon de convergence et calculer la somme pour

1.
∑

n⩾1
nxn 2.

∑
n⩾1

2nx2n 3.
∑

n⩾1
2n(−1)n

x2n

(⋆⋆) Exercice 6 Déterminer le rayon de convergence, et calculer la somme, pour
∑ n2 − 4n − 1

n + 2 xn.

(⋆⋆⋆) Exercice 7 Déterminer le rayon de convergence R de la série entière
∑ xn

2n + 1. Exprimer à l’aide

de fonctions usuelles f(x) =
+∞∑
n=0

xn

2n + 1 pour x ∈] − R, R[ :

— dans le cas où x < 0, on fera apparaître un développement en série du cours,
— dans le cas où x > 0, on s’aidera de

∑
n⩾0

x2n.

(⋆) Exercice 8 Déterminer le rayon de convergence de
∑ ch(n)

n
zn et

∑(
1 + 1√

n

)n
zn.

(⋆) Exercice 9 Calculer les dérivées n-ième en 0 de f : x 7→ ex2 .

(⋆) Exercice 10 Montrer que les fonctions f : x 7→ ex − 1 − x

x2 et g : x 7→ x2

ex − 1 − x
sont prolongeables

en des fonctions de classe C∞ sur R.

(⋆⋆) Exercice 11 Soit (un)n∈N la suite définie par u0 = 3 et la relation de récurrence un+1 =
n∑

k=0

(n
k

)
ukun−k

pour n ∈ N.
1. Montrer que pour tout n ∈ N, 0 ⩽

un

n! ⩽ 4n+1.

2. Soit f(x) =
+∞∑
n=0

un

n! xn. Montrer que f est solution de l’équation différentielle y′ = y2.
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(⋆⋆) Exercice 12 Soit f : [−1, 1] → C une fonction de classe C∞ vérifiant :

∀n ∈ N, ∀x ∈ [−1, 1], |f (n)(x)| ⩽ MKnn!

avec M ⩾ 0, K > 0. Montrer que f est développable en série entière au voisinage de 0.

(⋆⋆) Exercice 13 Soit
∑

anxn une série entière de rayon de convergence R = 1 et de somme S. On
suppose que la suite (an) est à termes réels positifs et que la fonction S est bornée sur [0, 1[.

1. Montrer que la série
∑

an est convergente.
2. Montrer que la fonction S est définie et continue sur [−1, 1].

(⋆⋆) Exercice 14
1. Rappeler le développement en série entière de Arctan sur ]−1, 1[. Comment retrouve-t-on ce résultat ?

2. On considère la série entière
∑

k∈N∗

(−1)k+1

(2k + 1)(2k − 1)x2k+1. Donner son rayon de convergence R et

calculer sa somme f(x). On exprimera f(x) à l’aide de fonctions usuelles.
3. Que peut-on dire de la convergence sur [−R, R] ?

4. Calculer
+∞∑
n=1

(−1)n+1

4n2 − 1 .

(⋆) Exercice 15 Développer en série entière au voisinage de 0 les fonctions suivantes. On précisera le
rayon de convergence de la série entière obtenue.

1. ln(1 + 2x2)

2. 1
a − x

si a ̸= 0

3. ln(a + x) où a > 0

4. ex

1 − x

5. ln(1 + x − 2x2)
6. (4 + x2)−3/2

(⋆⋆) Exercice 16 Développer en série entière f : x 7→ x2 + x − 3
(x − 2)2(2x − 1) et préciser le rayon de conver-

gence obtenu.

(⋆) Exercice 17 Pour x réel, on pose f(x) =
+∞∑
n=1

xn

√
n

.

1. Déterminer le rayon de convergence de la série entière définissant f .
2. Préciser l’intervalle de définition de f .
3. Établir la continuité de f sur son domaine de définition.
4. Déterminer la limite de f en 1.

(⋆⋆⋆) Exercice 18 À l’aide d’un développement en série entière de f ′, déterminer le développement en
série entière de f : x 7→ ln(x2 + x + 1).

(⋆⋆) Exercice 19 Donner les développements en série entière au voisinage de 0 des fonctions rationnelles
qui suivent :

1. f(x) = 1
(x + 2)(x − 1)2 2. g(x) = 1

1 + x + x2
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(⋆) Exercice 20 À l’aide d’un développement en série entière, justifier que la fonction g est de classe
C∞ sur R. Calculer ses dérivées successives en 0.

g(x) =
{ sin(x)

x si x ̸= 0
1 si x = 0

(⋆⋆⋆) Exercice 21 Soit f(x) la somme d’une série entière
∑

anxn de rayon de convergence 1. On pose,
pour n ∈ N,

Sn =
n∑

k=0
ak et g(x) =

+∞∑
n=0

Snxn

1. Déterminer le rayon de convergence de la série entière définissant g.
2. Pour x ∈] − 1, 1[, exprimer g(x) en fonction de f(x).

(⋆⋆) Exercice 22 Déterminer le rayon de convergence de la série entière
∑
n⩾0

n(−1)n
xn et calculer sa somme.

(⋆⋆) Exercice 23 Soit f : R∗ → R définie par f(x) = exp(−1/x2).
1. Montrer que pour tout n ∈ N∗, il existe Pn ∈ R[X] tel que :

∀x ∈ R∗ f (n)(x) = Pn

(1
x

)
f(x)

2. Montrer que f admet un prolongement g de classe C∞ sur R et que g(n)(0) = 0 pour tout n ∈ N.
3. Montrer que g n’est pas développable en série entière.

(⋆⋆⋆) Exercice 24

Calculer, pour x ∈] − 1, 1[, la somme
+∞∑
n=0

(−1)n

3n + 1x3n+1. Calculer
+∞∑
n=0

(−1)n

3n + 1.

(⋆⋆) Exercice 25 Soit f(x) = sh(arcsin(x)).
1. Donner une équation différentielle linéaire d’ordre 2 satisfaite par f et rappeler les conditions initiales.
2. En déduire que f est développable en série entière au voisinage de 0, et déterminer ce développement.

(⋆) Exercice 26 Sans utiliser le chapitre Equations différentielles, rechercher une solution développable
en série entière au voisinage de 0 de l’équation différentielle y′ + 2xy = 0.

(⋆⋆) Exercice 27 À l’aide d’une équation différentielle, développer en série entière f : x 7→ ex2 x∫
0

e−t2 dt.

Préciser le rayon de convergence.

(⋆) Exercice 28 Montrer qu’il existe une unique série entière de rayon de convergence +∞ dont la
somme f vérifie :

f(0) = 1 et xf ′′(x) + f ′(x) + f(x) = 0

(⋆⋆) Exercice 29

1. Déterminer le rayon de convergence de la série entière
∑ xn(2n

n

) .
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2. Soit f(x) =
+∞∑
n=0

xn(2n
n

) et an = 1
(2n

n ) . Déterminer une équation différentielle du premier ordre avec

second membre vérifiée par f sur son intervalle ouvert de convergence. Pour cela, on commencera par
établir la relation de récurrence entre an et an−1 : 2(2n − 1)an = nan−1.

(⋆⋆) Exercice 30 Soit (cn)n∈N la suite réelle définie par récurrence par c0 = 1 et pour tout n ∈ N,
cn+1 =

n∑
k=0

ckcn−k.

1. On suppose que la série entière
∑

cnxn est de rayon de convergence R strictement positif et on note
f(x) sa somme. Montrer qu’au voisinage de 0, on a :

xf(x)2 = f(x) − 1 puis f(x) = 1
2x

(1 −
√

1 − 4x)

2. Montrer que la fonction x 7→ 1
2x(1 −

√
1 − 4x) prolongée par continuité en 0 est développable en série

entière au voisinage en 0. En déduire :

∀n ∈ N, cn = 1
n + 1

(
2n

n

)

(⋆⋆) Exercice 31 Établir l’identité

1∫
0

arctan x

x
dx =

+∞∑
n=0

(−1)n

(2n + 1)2

(⋆⋆) Exercice 32 Soit α réel et f : x 7→ cos(2α arcsin x) sur [−1, 1].
1. Déterminer une équation différentielle linéaire d’ordre 2 dont f est solution.
2. En déduire le développement en série entière de f sur ] − 1, 1[.

Banque épreuve orale CCINP

Analyse : 2, 15 18, 19, 20, 21, 22, 23, 24, 47, 51.

Entraînement aux problèmes CCINP – ancien sujet

Dans ce problème, toutes les fonctions considérées sont définies sur un intervalle I de R et à valeurs réelles.
On rappelle le théorème suivant :
Si une fonction admet un développement en série entière sur l’intervalle I =] − r, r[ (r > 0)alors :

— la fonction f est de classe C∞ sur ] − r, r[,
— son développement en série entière est unique et donné par la série de Taylor de f à l’origine :

pour tout réel x ∈] − a, a[, f(x) =
+∞∑
n=0

f (n)(0)
n! xn

I. Quelques exemples d’utilisation de ce théorème
1. On considère la fonction f définie sur R par :

f(0) = 1 et pour x ̸= 0, f(x) = sin x

x

Démontrer que la fonction f est de classe C∞ sur R.
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2. Expliciter une fonction f de classe C∞ sur un voisinage de 0 et vérifiant, pour tout entier naturel n,
l’égalité f (n)(0) = n.n!

3. Soit f une fonction développable en série entière sur ] − R, R[ avec R > 1 :

∀x ∈] − R, R[, f(x) =
+∞∑
n=0

f (n)(0)
n! xn

On suppose que pour tout entier naturel n,
1∫

0

xnf(x) dx = 0.

(a) Montrer que la série
∑

f(x)f (n)(0)
n! xn converge normalement sur l’intervalle [0, 1].

(b) À l’aide du calcul de
1∫
0

(f(x))2 dx, montrer que f est la fonction nulle sur [0, 1].

(c) Montrer que f est la fonction nulle sur ] − R, R[.

II. Contre-exemples
4. Donner un exemple de fonction f à la fois de classe C∞ sur un intervalle I et développable en série

entière au voisinage de l’origine, mais qui ne coïncide pas avec sa série de Taylor en 0 sur I tout
entier.

5. Un exemple de fonction ne coïncidant avec sa série de Taylor en 0 sur aucun voisinage
de 0.
On considère la fonction f définie sur R par :

pour tout réel x ̸= 0, f(x) = exp(− 1
x2 ) et f(0) = 0

(a) Par les théorèmes généraux, f est de classe C∞ sur ]0, +∞[. Montrer par récurrence que pour
tout entier naturel n, il existe un polynôme Pn tel que, pour tout x ∈]0, +∞[,

f (n)(x) = Pn(x)
x3n

exp(− 1
x2 )

(b) Démontrer alors, toujours par récurrence, que f est de classe C∞ sur [0, +∞[ avec pour tout
n ∈ N, f (n)(0) = 0.
Par parité, f est ainsi de classe C∞ sur R.

(c) Montrer que f n’est pas développable en série entière au voisinage de 0.

6. Un exemple où la série de Taylor de f en 0 a un rayon nul.
On pose, pour x réel,

f(x) =
+∞∫
0

e−t

1 + tx2 dt

(a) Montrer que, pour tout réel x, la fonction t 7→ e−t

1 + tx2 est intégrable sur [0, +∞[.

(b) Question pour les 5/2 uniquement. Montrer que f est de classe C1 sur R.

On admet que f est de classe C∞ sur R et que l’on obtient ses dérivées successives en dé-
rivant sous le signe intégrale.

(c) Pour t ∈]0, +∞[, calculer, au moyen d’une série entière, les dérivées successives en 0 de la fonction

x 7→ e−t

1 + tx2 pour en déduire l’expression de f (n)(0) pour tout entier n.

(d) Quel est le rayon de convergence de la série entière
∑ f (n)(0)

n! xn ? La fonction f est-elle déve-
loppable en série entière à l’origine ?
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III. Condition suffisante
On se propose, dans cette partie, d’étudier une condition suffisante pour qu’une fonction de classe C∞ sur
un intervalle centré en 0 soit développable en série entière au voisinage de 0.

7. Soit a > 0 et f une fonction de classe C∞ sur ] − a, a[. On suppose qu’il existe un réel M > 0 tel que,
pour tout réel x ∈] − a, a[ et pour tout entier naturel n, |f (n)(x)| ⩽ M .
(a) Démontrer que la fonction f est développable en série entière au voisinage de 0.
(b) Donner un exemple simple de fonction, autre qu’une fonction constante, pour laquelle ce résultat

s’applique.
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