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La présentation, la lisibilité, l’orthographe, la qualité de la rédaction, la clarté et la précision des raison-
nements entreront pour une part importante dans l’appréciation des copies. Les candidats sont invités à
encadrer dans la mesure du possible les résultats de leurs calculs. Ils ne doivent faire usage d’aucun docu-
ment : l’utilisation de toute calculatrice et de tout matériel électronique est interdite.

Exercice

Dans tout l’exercice, pour tout entier naturel k, on identifie polynôme de Rk[X] et fonction polynomiale
associée pour la structure d’espace vectoriel normé.

1. Soit P un élément de R[X] unitaire (le terme de plus haut degré de P est égal à 1).
(a) Soit α ∈ R. Montrer que ∀z ∈ C, |z − α| ⩾ |Im(z)|.
(b) On suppose dans cette question que P est scindé sur R. En utilisant une factorisation de P ,

montrer que
∀z ∈ C, |P (z)| ⩾ |Im(z)|deg(P )

où deg(P ) désigne le degré du polynôme P .
(c) On prend dans cette question P (X) = X3 + 1.

i. Donner une factorisation de P dans C[X].
ii. Trouver z0 ∈ C tel que |P (z0)| < |Im(z0)|deg(P ).

(d) On suppose dans cette question que ∀z ∈ C, |P (z)| ⩾ |Im(z)|deg(P ). Montrer que toutes les
racines de P sont réelles. En déduire que P est scindé sur R.

(e) Énoncer clairement le résultat obtenu.
2. Soient q un entier naturel non nul et (An)n∈N une suite de matrices trigonalisables de Mq(R) qui

converge vers une matrice A. On appelle pour tout entier naturel n, Pn le polynôme caractéristique
de An et P celui de la matrice A.
(a) Donner le degré et le coefficient dominant de Pn.
(b) Prouver que ∀λ ∈ C, lim

n→+∞
Pn(λ) = P (λ).

(c) En déduire que A est trigonalisable.
(d) Qu’en conclut-on pour l’ensemble des matrices trigonalisables de Mq(R) ?

3. On prend dans cette question q = 2 et An =

1 − 1
n 1 − sin(n)

n

0 1 + 1
n

 où n est un entier non nul.

(a) Déterminer A = lim
n→+∞

An.

(b) Étudier la diagonalisabilité des matrices An et A dans M2(R).
(c) Conclure.

Problème
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Pour tout (α, n) ∈ R × N, on pose
(
α

n

)
= 1 si n = 0, et

(
α

n

)
= α(α− 1) · · · (α− n+ 1)

n! si n ⩾ 1.

On considère la suite réelle (bn)n∈N définie par :

b0 = 1 et ∀n ∈ N∗, bn = 1
n!

1∫
0

t(t− 1) · · · (t− n+ 1) dt =
1∫

0

(
t

n

)
dt

Le problème a pour objectif de déterminer le rayon de convergence de la série entière
∑
n⩾0

bnz
n, puis de

calculer sa somme sur son intervalle ouvert de convergence et en fin d’étudier son comportement aux bornes
de cet intervalle.

1ère Partie
Quelques résultats préliminaires

1. Une inégalité utile
Soit φ : [0, 1] −→ R une fonction de classe C2 telle que φ′′ ⩽ 0 et φ(0) = φ(1) = 0.

(a) Montrer que, pour tout t ∈ [0, 1] , φ(t) = tφ′(0) +
t∫

0

(t− s)φ′′(s) ds.

(b) En déduire que φ′(0) = −
1∫

0

(1 − s)φ′′(s) ds.

(c) Montrer que, pour tout t ∈ [0, 1] , φ(t) = −
1∫

0

(min(s, t) − st)φ′′(s) ds.

(d) Montrer que, pour tout (s, t) ∈ [0, 1]2 , 0 ⩽ min(s, t) − st ⩽ 1
4 , puis en déduire que

∀t ∈ [0, 1] , 0 ⩽ φ(t) ⩽ φ′(0) − φ′(1)
4

2. Étude de la convergence d’une intégrale et d’une série numérique

(a) Montrer que la fonction t 7−→ 1
t ln2 t

est intégrable sur l’intervalle [2,+∞[ et calculer
+∞∫
2

1
t ln2 t

dt.

(b) En déduire que la série numérique
∑

n⩾2

1
n ln2 n

est convergente.

3. Formule du binôme généralisée

Si N est un entier naturel et x un nombre réel, alors (1 + x)N =
N∑

n=0

(
N

n

)
xn =

+∞∑
n=0

(
N

n

)
xn ; c’est

la formule du binôme de Newton. L’objectif de cette section est d’établir une généralisation de cette
formule au cas où N est remplacé par un réel qui n’est pas un entier naturel.

Pour cela, on considère un nombre réel α, qui n’est pas un entier naturel, et on note fα la fonc-
tion définie sur l’intervalle ]−1,+∞[ par :

∀x > −1, fα(x) = (1 + x)α

(a) Vérifier que la fonction fα est solution sur l’intervalle ]−1,+∞[ de l’équation différentielle

(1 + x)y′ − αy = 0 (1)
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(b) On se propose dans cette sous-section de chercher les solutions de l’équation différentielle (1)
qui sont développables en série entière au voisinage de l’origine. Pour cela, on considère une
série entière

∑
n⩾0

anz
n de rayon de convergence R > 0 et on suppose que sa somme, notée

ψ : x 7−→
+∞∑
n=0

anx
n, est solution de (1) sur l’intervalle ]−r, r[, avec r = min(R, 1).

i. Montrer que, pour tout n ∈ N, (n+ 1)an+1 = (α− n)an.

ii. En déduire que, pour tout n ∈ N∗, an =
(
α

n

)
a0.

iii. Calculer le rayon de convergence ρ de la série entière ainsi obtenue lorsque a0 = 1, puis
vérifier que sa somme est bien solution de (1) sur l’intervalle ]−ρ, ρ[.

(c) Montrer soigneusement que pour tout x ∈ ]−1, 1[ , (1 + x)α =
+∞∑
n=0

(
α

n

)
xn.

2ème Partie
Calcul du rayon de convergence et de la somme de la série entière en question

On rappelle que la suite (bn)n∈N est définie par :

b0 = 1 et ∀n ∈ N∗, bn = 1
n!

1∫
0

t(t− 1) · · · (t− n+ 1) dt =
1∫

0

(
t

n

)
dt

4. Vérifier que, pour tout t ∈ [0, 1] et tout entier naturel n,
∣∣∣∣∣
(
t

n

)∣∣∣∣∣ ⩽ 1.

5. En déduire que le rayon de convergence R1 de la série entière
∑
n⩾0

bnz
n vérifie R1 ⩾ 1.

6. Soit x ∈ ]−1, 1[. On note (un)n∈N la suite de fonctions définies sur le segment [0, 1] par :

∀n ∈ N,∀t ∈ [0, 1] , un(t) =
(
t

n

)
xn

(a) Montrer que la série de fonctions
∑
n⩾0

un converge normalement sur le segment [0, 1].

(b) En déduire que

∀x ∈ ]−1, 1[ ,
+∞∑
n=0

bnx
n =

1∫
0

(1 + x)t dt = x

ln(1 + x)

7. On cherche ici à montrer que le rayon de convergence R1 de la série entière
∑
n⩾0

bnz
n vaut 1.

Raisonnant par l’absurde, on suppose que R1 > 1 et on pose f(x) =
+∞∑
n=0

bnx
n, x ∈ ]−R1, R1[.

(a) Soit x ∈ ]0, 2[. Justifier que f(x− 1) ∼
x→0+

−1
ln x .

(b) Trouver une contradiction et conclure.

3ème Partie
Étude du comportement de la série entière aux bornes de son intervalle de convergence

Pour tout entier n ⩾ 2, on note hn la fonction définie sur le segment [0, 1] par :

∀t ∈ [0, 1] , hn(t) = t lnn+
n∑

k=2
ln
(

1 − t

k

)
.

3



8. Étude de la suite de fonctions (hn)n⩾2
On considère la suite (vn)n⩾2 de fonctions définies sur le segment [0, 1] par :

∀n ⩾ 2, ∀t ∈ [0, 1] , vn(t) = ln
(

1 − t

n

)
− t ln

(
1 − 1

n

)

(a) Vérifier que, pour tout entier n ⩾ 2 et tout t ∈ [0, 1] , hn(t) =
n∑

k=2
vk(t).

(b) En utilisant le résultat de la première section de la première partie, montrer que, pour tout
entier n ⩾ 2 et tout t ∈ [0, 1] , 0 ⩽ vn(t) ⩽ 1

4(n− 1) − 1
4n .

(c) En déduire que la série de fonctions
∑
n⩾2

vn converge normalement sur le segment [0, 1].

(d) Montrer que la suite de fonctions (hn)n⩾2 converge uniformément sur le segment [0, 1] vers une
fonction notée h, puis justifier que h est continue sur le segment [0, 1].

9. Recherche d’un équivalent de la suite (bn)n∈N

(a) Vérifier que, pour tout n ∈ N∗, bn = (−1)n−1 |bn|.

(b) Montrer que, pour tout entier n ⩾ 2, (n+ 1) |bn+1| =
1∫

0

t(1 − t)e−t ln nehn(t) dt.

(c) Montrer que, pour tout entier n ⩾ 2 et tout t ∈ [0, 1] , 0 ⩽ h(t) − hn(t) ⩽ 1
4n .

(d) En déduire, pour tout entier n ⩾ 2, l’encadrement

e− 1
4n

1∫
0

t(1 − t)e−t ln neh(t) dt ⩽ (n+ 1) |bn+1| ⩽
1∫

0

t(1 − t)e−t ln neh(t) dt

(e) Montrer que, pour tout entier n ⩾ 2,
1∫

0

t(1 − t)e−t ln neh(t) dt = 1
ln2 n

ln n∫
0

se−s
(

1 − s

lnn

)
eh( s

ln n ) ds

(f) On note g la fonction définie sur l’intervalle [0,+∞[ par :

∀t ⩾ 0, g(t) = (1 − t)eh(t) si t ∈ [0, 1] et g(t) = 0 si t > 1

i. Justifier que la fonction g est continue sur l’intervalle [0,+∞[.
ii. Montrer, en vérifiant soigneusement les hypothèses du théorème utilisé, que la suite numé-

rique +∞∫
0

se−sg

(
s

lnn

)
ds


n⩾2

converge vers 1.

iii. Déduire de ce qui précède que |bn| ∼
n→+∞

1
n ln2 n

et que bn ∼
n→+∞

(−1)n−1

n ln2 n
.

10. Retour à l’étude de la série entière aux bornes de son intervalle de convergence
(a) Montrer que la série entière

∑
n⩾0

bnx
n, de la variable réelle x, converge normalement sur le segment

[−1, 1].
On note encore f la somme de cette série sur le segment [−1, 1] :

∀x ∈ [−1, 1], f(x) =
+∞∑
n=0

bnx
n

(b) Justifier que, pour tout x ∈ ]−1, 1] , f(x) = x

ln(1 + x) .

(c) Justifier la convergence de la série numérique
∑
n⩾0

(−1)nbn et calculer sa somme.
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