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MP
pour jeudi 22 janvier 2026

La présentation, la lisibilité, l’orthographe, la clarté et la précision des raisonnements entrent pour
une part importante dans l’appréciation des copies. Il faut souligner ou encadrer les résultats.
Bon travail !

Dans tout ce problème, on désigne par (an)n∈N∗ la suite dont le terme général est donné par :

∀n ∈ N∗, an =
n∑

k=1

1
k

− ln(n)

Le but de ce problème est dans un premier temps de s’assurer de la convergence de la suite (an)n∈N∗ ,
puis d’essayer de déterminer différentes expressions de sa limite, à l’aide d’intégrales.

I Convergence de la suite (an)n∈N∗.
1. Déterminer un équivalent lorsque n tend vers +∞ de la différence an+1 − an, puis déterminer

la nature de la série numérique ∑(an+1 − an).
2. Montrer que la suite (an)n∈N∗ est convergente vers un réel que l’on notera γ pour toute la suite

du problème, puis que :
n∑

k=1

1
k

= ln(n) + γ + o(1) lorsque n → +∞

II Application au problème du collectionneur de vignettes.
Pour augmenter ses ventes, un industriel de l’agro-alimentaire qui commercialise des paquets de
céréales pour le petit déjeuner décide d’insérer au fond du paquet une figurine de sportifs célèbres.
Le modèle de figurine inséré dans le paquet est choisi de manière équiprobable parmi n modèles de
référence.
Pour différencier les n modèles de figurines et les identifier de manière unique, on considèrera que
chaque modèle de figurine porte un numéro unique entre 1 et n.
Chaque paquet de céréales contient ainsi une figurine à collectionner, que l’on ne découvre qu’à
l’ouverture du paquet. On se demande combien un consommateur, que l’on va appeler ici le collec-
tionneur, doit ouvrir de paquets pour posséder au moins un exemplaire de chacune des n figurines.
On décompose ce nombre de paquets Nn en Nn = τ1 + τ2 + · · · + τn où τk est le nombre de paquets
supplémentaires nécessaires pour obtenir k figurines différentes quand on en a déjà k −1 différentes.
Dans tout ce qui suit, on désignera par Ck(i) l’événement « le collectionneur découvre dans le k-ième
paquet la figurine numérotée i ».

3. Déterminer la loi de N1.
4. Soit m ∈ N \ {0, 1}. Quelle est la probabilité de l’événement C : « le collectionneur obtient

toujours la même vignette au cours de ses m premiers achats » ?
En déduire que : ∀m ∈ N∗, P(N2 > m) = 1

nm−1 .
5. Déterminer alors la loi de N2.
6. Soit k ∈ N∗. Justifier que τk suit une loi géométrique, dont on précisera le paramètre.
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7. En déduire l’espérance de la variable aléatoire Nn et établir que :

E(Nn) = n (ln(n) + γ + o(1)) lorsque n → +∞

8. Justifier l’indépendance des variables aléatoires τ1, τ2, . . . , τn.
9. On rappelle par ailleurs que la série ∑

n⩾1
1

n2 est convergente et que

+∞∑
n=1

1
n2 = π2

6

Démontrer que Nn admet une variance et que : V(Nn) ⩽ n2 π2

6 .
10. Soit ε > 0. Démontrer que

P (|Nn − E(Nn)| > εn ln(n)) −−−−→
n→+∞

0

11. Soit ε > 0. Démontrer que

P
(∣∣∣∣∣ Nn

n ln(n) − 1
∣∣∣∣∣ > ε

)
−−−−→
n→+∞

0

III Une première expression intégrale de γ.
On admettra le résultat suivant : pour tous réels a et b strictement positifs, l’intégrale

+∞∫
0

e−at − e−bt

t
dt

est convergente, et on a
+∞∫
0

e−at − e−bt

t
dt = ln

(
b

a

)

12. Démontrer que : ∀t > 0, 1
t

=
+∞∑
n=0

e−nt−e−(n+1)t

t
.

13. En déduire que : ∀t > 0, e−t
(

1
1−e−t − 1

t

)
=

+∞∑
n=0

e−(n+1)t −
(

e−(n+1)t−e−(n+2)t

t

)
.

14. Montrer que l’intégrale
+∞∫
0

e−t
( 1

1 − e−t
− 1

t

)
dt

est convergente et que l’on a :

γ =
+∞∫
0

e−t
( 1

1 − e−t
− 1

t

)
dt

IV Une deuxième expression intégrale de γ.
15. Soit n ∈ N∗. Étudier la continuité en 0 de la fonction t 7→ 1−(1−t)n

t
.

16. Soit n ∈ N∗. En remarquant que :
1∫

0

(1 − t)n−1 dt = 1
n

exprimer
n∑

k=1

1
k

à l’aide d’une intégrale puis à l’aide d’un changement de variable affine, établir
que :

∀n ∈ N∗, an =
1∫

0

1 − (1 − u
n
)n

u
du −

n∫
1

(1 − u
n
)n

u
du
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17. Soit x ∈ [1, +∞[. Déterminer la limite sous forme d’une intégrale quand n tend vers +∞ de
la suite dont le terme général est (1 − x

n
)n.

18. On considère la suite de fonctions (fn)n∈N∗ définie par :

∀n ∈ N, fn : [1, +∞[→ R, t 7→


(1− t

n
)n

t
si 1 ⩽ t ⩽ n

0 si n < t

Déterminer la limite simple de la suite de fonctions (fn)n∈N.
19. Démontrer que l’on a : ∀t ∈ [0, 1[, ln(1 − t) ⩽ −t.

20. Établir la convergence de l’intégrale
+∞∫
1

e−u

u
du.

21. Justifier l’intégrabilité sur [1, +∞[ des fonctions fn définies dans la question précédente.
22. Établir la convergence, puis déterminer la limite sous forme d’une intégrale quand n tend vers

+∞, de la suite de terme général
n∫

1

(1 − u
n
)n

u
du

23. Établir la convergence de l’intégrale
1∫
0

1−e−u

u
du.

24. À l’aide de l’inégalité des accroissements finis, montrer que :

∀n ∈ N∗, ∀t ∈]0, 1], 0 ⩽
1 − (1 − t

n
)n

t
⩽ 1

25. Établir la convergence, puis déterminer la limite sous forme d’une intégrale quand n tend vers
+∞, de la suite de terme général

1∫
0

1 − (1 − u
n
)n

u
du

26. En déduire que :

γ =
1∫

0

1 − e−u

u
du −

+∞∫
1

e−u

u
du

V Deux autres expressions intégrales de γ.
Sous réserve que cela ait du sens, on appelle fonction Γ la fonction donnée par :

Γ : x 7→
+∞∫
0

tx−1e−t dt

On désignera par u la fonction de deux variables définie par : u : R × R∗
+ → R, (x, t) 7→ tx−1e−t.

27. Montrer que Γ est définie sur l’intervalle ]0, +∞[.
28. Montrer que Γ est de classe C1 sur ]0, +∞[ et donner une expression de sa dérivée.
29. Établir que : ∀x ∈]0, +∞[, Γ(x + 1) = xΓ(x).
30. On admet la formule de Weierstrass :

(W ) : ∀x ∈ R∗
+,

1
Γ(x) = xeγx

+∞∏
n=1

(
e− x

n (1 + x

n
)
)

À l’aide de la série de fonctions ∑
n⩾1

(
x
n

− ln(1 + x
n
)
)
, montrer que :

∀x > 0,
Γ′(x)
Γ(x) = −1

x
− γ +

+∞∑
n=1

( 1
n

− 1
x + n

)
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31. En déduire que Γ′(1) = −γ, et calculer alors Γ′(2).
32. À l’aide d’un changement de variables, montrer que l’on a

γ = −
1∫

0

ln(− ln(t)) dt

VI Recherche d’une valeur approchée de γ.
Dans toute cette partie, A désigne un réel strictement positif.

33. Démontrer que :

γ = − ln(A) +
A∫

0

1 − e−u

u
du −

+∞∫
A

e−u

u
du

34. Établir la convergence de la série numérique ∑(−1)k Ak+1

(k+1)(k+1)! , puis en donner sa somme à
l’aide d’une intégrale.

35. Démontrer que : ∀x > 0,
+∞∫
x

e−u

u
du = e−x

x
−

+∞∫
x

e−u

u2 du

36. Déterminer l’expression d’un polynôme R de degré 2 à coefficients réels tel que :

∀x > 0,

+∞∫
x

e−u

u
du = R(x)e−x

x3 −
+∞∫
x

6e−u

u4 du

37. Soit n ∈ N tel que n > A + 1. Justifier alors que :

∀n ∈ N∗,

∣∣∣∣∣γ −
n∑

k=0

(−1)kAk+1

(k + 1)(k + 1)! − R(A)e−A

A3 + ln(A)
∣∣∣∣∣ ⩽ An+1

(n + 1)(n + 1)! + 6e−A

A4

VII Étude d’une série entière aux bornes de son disque ouvert de convergence.
L’objet de cette partie du problème est d’étudier le comportement de la somme f de la série entière∑
n⩾1

ln(n)xn de la variable réelle x aux bornes de son intervalle ouvert de convergence.
VII.A – Rayon de convergence et première expression de la somme.

38. Démontrer que la série entière ∑
n⩾1

ln(n)xn est de rayon de convergence égal à 1, puis préciser
le domaine de définition de la fonction f .

VII.B – Étude de f en 1.
39. Déterminer la limite de f lorsque x tend vers 1 par valeur inférieure.
40. Déterminer le rayon de convergence de la série entière ∑

n⩾1

(
1 + 1

2 + · · · + 1
n

)
xn de la variable

réelle x dont on note alors g la somme.
41. À l’aide des deux séries entières ∑

n⩾0
xn et ∑

n⩾1
xn

n
, montrer que :

∀x ∈] − 1, 1[, g(x) = ln(1 − x)
x − 1

42. Montrer qu’il existe M > 0 tel que : ∀x ∈ [0, 1[, |f(x) − g(x)| ⩽ M
1−x

.
43. En déduire que f(x) ∼

x→1,x<1
g(x).
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VII.C – Étude de f en −1.
On considère la suite (cn)n∈N∗ dont le terme général est donné par :c1 = −1

∀n ∈ N \ {0, 1}, cn = − ln
(
1 − 1

n

)
− 1

n

44. Montrer que le rayon de convergence de la série entière ∑
n⩾1

cnxn de la variable réelle x, dont
on note alors h la somme, est égal à 1, puis préciser le domaine de définition de h.

45. Montrer que la série numérique ∑
n⩾1

cn converge et que sa somme vaut la constante −γ.

46. La fonction h est-elle continue en 1 ?
47. Montrer que :

∀p ∈ N∗,
2p∑

k=1
(−1)kck = ln

(
24p(p!)4

2p((2p)!)2

)
+

2p∑
k=1

(−1)k−1

k

48. On rappelle que la série ∑
k⩾1

(−1)k−1

k
est convergente et que

+∞∑
k=1

(−1)k−1

k
= ln(2)

Montrer que f(x) −→
x→−1, x>−1

1
2 ln

(
π

2

)
.

On pourra au préalable déterminer une relation entre f et h sur un intervalle de R que l’on
précisera.
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