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La présentation, la lisibilité, l’orthographe, la clarté et la précision des raisonnements entrent pour
une part importante dans l’appréciation des copies. Il faut souligner ou encadrer les résultats.
Bon travail !

Ce sujet comporte quatre parties, qui peuvent être traitées indépendamment :
— La partie I étudie deux façons d’approcher le réel

√
2.

— La partie II généralise la méthode de Héron d’Alexandrie étudiée en sous-partie I.B au cadre
des matrices symétriques positives.

— La partie III traite le cas général de la méthode de Newton numérique réelle.
— La partie IV s’inspire de la méthode de Newton abordée en partie III pour établir l’existence de

la décomposition de Jordan-Chevalley-Dunford, par une approche algorithmique et en donne
une application à la détermination de la racine carrée de certaines matrices.

Notations
Dans tout le sujet, K désigne R ou C et q est un entier naturel non nul.
On note Mq(K) l’ensemble des matrices carrées de taille q à coefficients dans K ; on note Iq la
matrice identité dans Mq(K) et P ⊤ la transposée d’une matrice P . On note Sq(R) l’ensemble des
matrices symétriques appartenant à Mq(R). On note O(q) le sous-ensemble de Mq(R) constitué
des matrices orthogonales, c’est-à-dire des matrices P ∈ Mq(R) vérifiant P ⊤P = Iq.
Pour toute matrice M ∈ Mq(K) et pour tout 1 ⩽ i, j ⩽ q, on note [M ]i,j le coefficient d’indice (i, j)
de M .
Pour a1, . . . , aq ∈ K, on note diag(a1, . . . , aq) la matrice A de Mq(K) telle que,

pour tous 1 ⩽ i, j ⩽ q, [A]i,j =

ai si i = j

0 sinon

On munit l’ensemble Mq(K) d’une norme ∥.∥. On rappelle que, par l’équivalence des normes en
dimension finie, la notion de convergence d’une suite (Mn)n∈N à valeurs dans Mq(R) ne dépend
pas du choix de la norme ∥.∥. On pourra alors utiliser librement et sans démonstration dans tout
le sujet les deux résultats suivants : pour toute suite (Mn)n∈N à valeurs dans Mq(R) et pour tout
matrice M de Mq(R),

— La suite (Mn)n∈N converge vers M si, et seulement si, pour tous 1 ⩽ i, j ⩽ q, la suite(
[Mn]i,j

)
n∈N

converge vers [M ]i,j ;

— Si A ∈ Mq(K) et si la suite (Mn)n∈N converge vers M , alors les suites (AMn)n∈N et (MnA)n∈N
convergent respectivement vers AM et MA.
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I Quelques approximations de
√

2.

I.A- Via un développement en série entière.
Soit α ∈ R. On pose a0 = 1 et, pour tout n ∈ N∗,

an = α(α − 1) · · · (α − n + 1)
n! = 1

n!

n−1∏
k=0

(α − k)

Q 1. Montrer que le rayon de convergence R de la série entière ∑
n∈N

anxn vaut :

R =

1 si α /∈ N
+∞ sinon

Q 2. Donner, sans justification supplémentaire, l’expression de la fonction somme de la série entière∑
n∈N

anxn sur ] − R, R[.

Q 3. Pour tout n ∈ N, on pose bn = (2n)!
22n(2n−1)(n!)2 . Montrer que, pour tout x ∈] − 1, 1[,

√
1 + x =

+∞∑
n=0

(−1)n+1bnxn

Q 4. Déterminer un équivalent simple de la suite (bn)n∈N. En déduire la nature de la série ∑
n∈N

(−1)n+1bn.

Q 5. Montrer que la série entière ∑
n∈N

(−1)n+1bnxn converge uniformément sur [−1, 1] et en déduire

la valeur de ∑
n∈N

(−1)n+1bn.

Q 6. Montrer que
√

2 =
n∑

k=0
(−1)k+1bk + O

n→+∞

( 1
n3/2

)

I.B- Via la méthode de Héron d’Alexandrie.
Soit α ∈ R+. On définit la suite (cn(a))n∈N par :{

c0(a) = 1
∀n ∈ N, cn+1(a) = 1

2

(
cn(a) + a

cn(a)

)
Q 7. Montrer par récurrence sur n ∈ N, que, pour tout n ∈ N, cn(a) est bien défini et que cn(a) > 0.
Q 8. Pour tout n ∈ N, donner une expression de cn+1(a)2 − a faisant intervenir (cn(a)2 − a2). En

déduire que, pour tout n ⩾ 1, cn(a) ⩾
√

a.
Q 9. Montrer que (cn(a))n∈N converge vers

√
a.

Q 10. Calculer c1(2). A l’aide de la question Q8, montrer que, pour tout n ∈ N∗,

cn(2)2 − 2 ⩽ 8
( 1

32

)2n−1

En déduire que
√

2 = cn(2) + O
n→+∞

(( 1
32

)2n−1)
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I.C- Comparaison des différentes approximations de
√

2 : vitesses de
convergence.

Q 11. Parmi les deux suites
(

1
n3/2

)
et
((

1
32

)2n−1)
, déterminer celle qui converge le plus vite vers 0.

Dans la question suivante, on s’interdit d’utiliser une valeur approchée de
√

2 stockée dans Python.
En particulier, on s’interdit l’utilisation de 2**(1/2), math.sqrt(2) ou numpy.sqrt(2).

Q 12. Écrire une suite d’instruction en Python permettant, grâce à la méthode de la question Q10,
d’obtenir une approximation de

√
2 avec 10 décimales correctes.

II Racine carrée d’une matrice symétrique positive.
On note S +

q (R) l’ensemble des matrices symétriques positives de Mq(R), c’est-à-dire des matrices
M ∈ Sq(R) vérifiant X⊤MX ⩾ 0 pour toute matrice colonne X ∈ Mq,1(R).
Dans toute cette partie, étant donnée une matrice M ∈ Mq(R), on appelle racine carrée de M toute
matrice B ∈ Mq(R) telle que B2 = M .

II.A- Racines carrées de la matrice I2.
Q 13. Rappeler sans démonstration la description des matrices de O(2).

On décrira leurs coefficients en fonction d’un paramètre θ ∈ R.
Q 14. Déterminer les racines carrées de I2 appartenant à O(2). Que peut-on conclure quant au

nombre de racines carrées de I2 ?

II.B- Existence et unicité d’une racine carrée symétrique positive.
Q 15. Rappeler sans démonstration la condition nécessaire et suffisante portant sur le spectre d’une

matrice symétrique pour qu’elle soit positive.
Q 16. Soit M ∈ S +

q (R). Déterminer une matrice B ∈ S +
q (R) telle que B2 = M .

Q 17. Montrer que B est la seule racine carrée de M appartenant à S +
q (R).

On note alors
√

M l’unique racine carrée symétrique positive de M .

II.C- Une méthode de Héron d’Alexandrie matricielle.
Soit M ∈ S +

q (R). On note λ1, . . . , λn les valeurs propres de M comptées avec multiplicité. On
rappelle que, d’après le théorème spectral, il existe une matrice P ∈ O(q) telle que

M = P diag(λ1, . . . , λq)P ⊤

On rappelle de plus que, pour tout réel a ⩾ 0, la suite (cn(a))n∈N définie en sous-partie I.B, est à
valeurs strictement positives et converge vers

√
a. On pose alors :{

M0 = Iq

∀n ∈ N, Mn+1 = 1
2 (Mn + MM−1

n )

Q 18. Montrer, par récurrence sur n ∈ N que, pour tout n ∈ N, Mn est bien définie et que

Mn = P diag
(
cn(λ1), . . . , cn(λq)

)
P ⊤

Q 19. En déduire que la suite (Mn)n∈N converge vers
√

M .
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III Méthode de Newton numérique.
Soit I un intervalle ouvert non vide de R et f : I → R une fonction de classe C 2 sur I telle que f ′

ne s’annule pas sur I.

III.A- Convergence de la méthode de Newton.
Q 20. Que dire du nombre de points d’annulation de f sur I ?

On suppose qu’il existe c ∈ I tel que f(c) = 0. Pour tout r > 0, on pose Jr = [c − r, c + r].
Soit (cn)n∈N une suite telle que {

c0 ∈ I

∀n ∈ N, cn+1 = cn − f(cn)
f ′(cn)

L’objectif de cette sous-partie III.A est de montrer qu’il existe r > 0 tel que Jr ⊂ I et tel que, si
c0 ∈ Jr, alors (cn)n∈N converge vers c.

Q 21. Soit r > 0 tel que Jr ⊂ I. Justifier que sr = sup
Jr

|f”| et ir = inf
Jr

|f ′| sont bien définis et que
ir > 0.

On note Kr = sr

2ir

.

Q 22. Justifier qu’il existe r > 0 tel que 0 ⩽ rKr < 1.
Dans la suite de cette sous-partie III.A, on fixe r > 0 tel que rKr < 1.

Q 23. On suppose que n ∈ N et cn ∈ Jr. A l’aide de l’inégalité de Taylor-Lagrange, montrer que
|cn+1 − c| ⩽ Kr|cn − c|2,

puis en déduire que cn+1 ∈ Jr.

Q 24. Montrer que, si c0 ∈ Jr, alors, pour tout n ∈ N, |cn − c| ⩽ (Kr|c0 − c|)2n

Kr

et conclure.

III.B- Une implémentation en Python.
Q 25. On désigne dans cette question par df la fonction Python représentant f ′. Écrire une fonction

Python newton(c0,f,df) prenant en arguments le réel c0 et les fonctions f et f ′ et renvoyant,
si la suite (cn)n∈N converge, une valeur approchée de c et la valeur None si (cn)n∈N diverge.
On pourra convenir ici que la suite (cn)n∈N converge si on trouve un n ⩽ 50 tel que
|f(cn)| < 10−10, et qu’elle diverge sinon.

IV Décomposition de Jordan-Chevalley-Dunford et calcul de
racine carrée.
On dit qu’une matrice N ∈ Mq(C) est nilpotente s’il existe k ∈ N∗ tel que Nk = 0.
Dans toute cette partie IV, on fixe M ∈ Mq(C). On note λ1, . . . , λs les valeurs propres deux à deux
distinctes de M (avec s ∈ N∗). On définit alors

P (X) =
s∏

i=1
(X − λi)

On note P ′ le polynôme dérivé de P .
Pour tout polynôme Q =

d∑
k=0

γkXk ∈ C[X], on note Q(M) =
d∑

k=0
γkMk ∈ Mq(C) et on pose

C[M ] =
{
Q(M)|Q ∈ C[X]

}
On admet alors et on pourra utiliser librement que :
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— si A, B ∈ C[M ], alors A et B commutent, et A + B et AB appartiennent à C[M ] ;
— Si Q ∈ C[X] et si A ∈ C[M ], alors Q(A) ∈ C[M ].

IV.A- Une méthode de Newton matricielle
Q 26. Montrer que, pour toute racine complexe µ de P ′, la matrice M −µIq est inversible. En déduire

que P ′(M) est inversible.
Q 27. Montrer que le polynôme caractéristique χM de M divise P q. En déduire que P (M) est

nilpotente.
Grâce à ces résultats, on peut définir la suite de matrices (Mn)n∈N en posant :{

M0 = M
∀n ∈ N, Mn+1 = Mn − P (Mn)P ′(Mn)−1

On admet que, pour tout n ∈ N :
— Mn est bien définie et appartient à Mq(C) ;

— il existe Bn ∈ C[M ] telle que P (Mn) =
(
P (M)

)2n

Bn ;
— la matrice P ′(Mn) est inversible

Q 28. Montrer que la suite (Mn)n∈N est stationnaire.
Q 29. Montrer que, pour tout n ∈ N, les matrices M et Mn commutent.
Q 30. On note A la limite de (Mn)n∈N. Montrer que A est diagonalisable.
Q 31. On pose N = M − A. Justifier que A et N commutent et que N est nilpotente.

IV.B- Un calcul de racine carrée pour certaines matrices réelles symé-
triques.

Q 32. En utilisant le développement limité en 0 de la fonction x 7−→
√

1 + x, montrer qu’il existe
un polynôme Rq ∈ R[X] tel que Xq divise 1 + X − Rq(X)2.

Q 33. En déduire l’expression d’une racine carrée de Iq + N lorsque N est une matrice nilpotente.
Pour les questions suivantes, on suppose que M est à coefficients réels et trigonalisable dans Mq(R)
et que le spectre de M inclus dans R∗

+.
On considère alors les matrices A et N introduites dans la sous-partie IV.A..

Q 34. Justifier que A et N sont à coefficients réels et que A est diagonalisable dans Mq(R).
Q 35. Montrer que le spectre de A est inclus dans R∗

+.
Q 36. Justifier que la méthode de Héron d’Alexandrie de la sous-partie II.C peut être appliquée à

la matrice A afin d’obtenir une racine carrée A′ de A. En déduire l’expression d’une racine
carrée de M .
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