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La présentation, la lisibilité, 'orthographe, la clarté et la précision des raisonnements entrent pour
une part importante dans 'appréciation des copies. Il faut souligner ou | encadrer| les résultats.
Bon travail !

Ce sujet comporte quatre parties, qui peuvent étre traitées indépendamment :
— La partie I étudie deux facons d’approcher le réel /2.

— La partie II généralise la méthode de Héron d’Alexandrie étudiée en sous-partie [.B au cadre
des matrices symétriques positives.

— La partie III traite le cas général de la méthode de Newton numérique réelle.

— La partie IV s’inspire de la méthode de Newton abordée en partie 11T pour établir I'existence de
la décomposition de Jordan-Chevalley-Dunford, par une approche algorithmique et en donne
une application a la détermination de la racine carrée de certaines matrices.

Notations

Dans tout le sujet, K désigne R ou C et ¢ est un entier naturel non nul.

On note M,(K) l'ensemble des matrices carrées de taille ¢ a coefficients dans K; on note I, la
matrice identité dans M (K) et PT la transposée d'une matrice P. On note .#,(R) 'ensemble des
matrices symétriques appartenant a M,(R). On note O(q) le sous-ensemble de M, (R) constitué
des matrices orthogonales, c’est-a-dire des matrices P € M,(R) vérifiant PTP = I,,.

Pour toute matrice M € M (K) et pour tout 1 < 7,5 < ¢, on note [M]; ; le coefficient d’indice (1, 5)
de M.

Pour a4, ..., a, € K, on note diag(ay, ..., a,) la matrice A de M,(K) telle que,

pour tous 1 < i,j <¢q, [Ali;= {() sinon ]

On munit I'ensemble M, (K) d’une norme ||.||. On rappelle que, par 1'équivalence des normes en
dimension finie, la notion de convergence d'une suite (M, )nen a valeurs dans M, (R) ne dépend
pas du choix de la norme |.||. On pourra alors utiliser librement et sans démonstration dans tout
le sujet les deux résultats suivants : pour toute suite (M, ),en & valeurs dans M, (R) et pour tout
matrice M de M,(R),

— La suite (M,)nen converge vers M si, et seulement si, pour tous 1 < 4,5 < ¢, la suite

([Mn]”) o Converge vers [M];;;

— Si A € M,(K) et si la suite (M,,),en converge vers M, alors les suites (AM,,)nen €t (M, A)pen
convergent respectivement vers AM et M A.



I Quelques approximations de /2.

I.A- Via un développement en série entiere.

Soit o € R. On pose ag = 1 et, pour tout n € N*,

Q 2.

Q 3.

Q 4.
Q 5.

Q 6.

ala—1)---(a—n+1) 17

ay = :—H(a—k)

n! n!

Montrer que le rayon de convergence R de la série entiere Y a,x™ vaut :
neN

R—{l siav ¢ N

+00  sinon

Donner, sans justification supplémentaire, ’expression de la fonction somme de la série entiere

> ayx” sur | — R, R].

neN

Pour tout n € N, on pose b,, = % Montrer que, pour tout x €] — 1, 1],

+oo
Vitr=> (-1)""ba"
n=0

Déterminer un équivalent simple de la suite (b, )nen. En déduire la nature de la série Y (—1)"*1b,,.
neN

Montrer que la série entiere Y- (—1)"*1b,2" converge uniformément sur [—1, 1] et en déduire

neN
la valeur de Y (—1)""1b,,.
neN

Montrer que

" 1
N1\
\/5_12]( b bk+"—>q<>° <n3/2>

I.B- Via la méthode de Héron d’Alexandrie.

Soit @ € Ry. On définit la suite (¢, (a))nen par :

Q7.
Q 8.

Q 9.
Q 10.

{ co(a) =1
Vn €N, euila) = & (cala) + =)

cn(a)

Montrer par récurrence sur n € N, que, pour tout n € N, ¢,(a) est bien défini et que ¢, (a) > 0.

Pour tout n € N, donner une expression de ¢,;1(a)? — a faisant intervenir (c,(a)? — a?). En
déduire que, pour tout n > 1, ¢,(a) = v/a.

Montrer que (¢, (a))nen converge vers /a.

Calculer ¢;(2). A l'aide de la question 8, montrer que, pour tout n € N*,
) 1 2n—1
L(2)° —2<8(—
enl2) —2< (32)

En déduire que

VZ=a@)+ O ((3)12)2)



I.C- Comparaison des différentes approximations de /2 : vitesses de
convergence.

2n—1
Q 11. Parmi les deux suites (#) et ((312) >, déterminer celle qui converge le plus vite vers 0.

Dans la question suivante, on s’interdit d’utiliser une valeur approchée de /2 stockée dans Python.
En particulier, on s’interdit ['utilisation de 2**(1/2), math.sqrt(2) ou numpy.sqrt(2).

Q 12. Ecrire une suite d’instruction en Python permettant, grace & la méthode de la question Q10,
d’obtenir une approximation de v/2 avec 10 décimales correctes.

II Racine carrée d’une matrice symétrique positive.

On note .7 " (R) I'ensemble des matrices symétriques positives de M, (R), c’est-a-dire des matrices
M € Z,(R) vérifiant X" MX > 0 pour toute matrice colonne X € M, ;(R).

Dans toute cette partie, étant donnée une matrice M € M, (R), on appelle racine carrée de M toute
matrice B € M,(R) telle que B*> = M.

II.A- Racines carrées de la matrice I.

Q 13. Rappeler sans démonstration la description des matrices de O(2).
On décrira leurs coefficients en fonction d’'un parametre 6 € R.

Q 14. Déterminer les racines carrées de I appartenant a O(2). Que peut-on conclure quant au
nombre de racines carrées de Iy ?

I1.B- Existence et unicité d’une racine carrée symétrique positive.

Q 15. Rappeler sans démonstration la condition nécessaire et suffisante portant sur le spectre d'une
matrice symétrique pour qu’elle soit positive.

Q 16. Soit M € .5 (R). Déterminer une matrice B € .,"(R) telle que B> = M.

Q 17. Montrer que B est la seule racine carrée de M appartenant a S (R).
On note alors v/ M l'unique racine carrée symétrique positive de M.

I1.C- Une méthode de Héron d’Alexandrie matricielle.

Soit M € Yq“L (R). On note Aq,..., A, les valeurs propres de M comptées avec multiplicité. On
rappelle que, d’apres le théoréme spectral, il existe une matrice P € O(q) telle que

M = P diag(\y, ..., \)PT

On rappelle de plus que, pour tout réel a > 0, la suite (¢,(a))nen définie en sous-partie 1.B, est a
valeurs strictement positives et converge vers y/a. On pose alors :

Moy = 1,
Vn €N, Myyy = L (M, + MM;?)

Q 18. Montrer, par récurrence sur n € N que, pour tout n € N, M, est bien définie et que

M, = P diag(ca(M), - -, ea(A) ) PT

Q 19. En déduire que la suite (M, ),en converge vers v/ M.



IIT Méthode de Newton numeérique.

Soit I un intervalle ouvert non vide de R et f : I — R une fonction de classe € sur I telle que f’
ne s’annule pas sur I.

II1.A- Convergence de la méthode de Newton.

Q 20. Que dire du nombre de points d’annulation de f sur I ?

On suppose qu'il existe ¢ € I tel que f(c) = 0. Pour tout r > 0, on pose J, = [c —r,c+ 7]
Soit (¢, )nen une suite telle que
co €1
flen)

Vn € N, Cnt+1 = Cp — F(cn)

L’objectif de cette sous-partie III.A est de montrer qu’il existe r > 0 tel que J,. C [ et tel que, si
co € J., alors (¢, )nen converge vers c.

Q 21. Soit r > 0 tel que J, C I. Justifier que s, = sup|f”| et 4, = if]lf|fl| sont bien définis et que
Jr -

1 > 0.
s

On note K, = —.
21,

Q 22. Justifier qu'il existe 7 > 0 tel que 0 < 7K, < 1.
Dans la suite de cette sous-partie III.A, on fixe » > 0 tel que 7K, < 1.
Q 23. On suppose que n € N et ¢, € J.. A l'aide de I'inégalité de Taylor-Lagrange, montrer que

‘Cn—&-l - C’ g Kr‘cn - 0’27

puis en déduire que ¢, 41 € J,.

(Kr|co — cl)?

et conclure.
K,

Q 24. Montrer que, si ¢y € J,, alors, pour tout n € N, |¢, — ¢| <

I11.B- Une implémentation en Python.

Q 25. On désigne dans cette question par df la fonction Python représentant f’. Ecrire une fonction
Python newton(c0,f,df) prenant en arguments le réel ¢q et les fonctions f et f’ et renvoyant,
si la suite (¢, )nen converge, une valeur approchée de ¢ et la valeur None si (¢, )qen diverge.
On pourra convenir ici que la suite (¢, )nen converge si on trouve un n < 50 tel que
|f(cn)| < 10710 et qu’elle diverge sinon.

IV Décomposition de Jordan-Chevalley-Dunford et calcul de
racine carrée.

On dit qu'une matrice N € M,(C) est nilpotente s'il existe k € N* tel que N* = 0.
Dans toute cette partie IV, on fixe M € M,(C). On note Ay, ..., A les valeurs propres deux a deux
distinctes de M (avec s € N*). On définit alors

s

P(X)=]][(X-N)

i=1
On note P’ le polynéme dérivé de P.

d d
Pour tout polyndme @ = 3. v X"* € C[X], on note Q(M) = > 1M* € M,(C) et on pose
k=0 k=0

c(M] = {Q(M)|Q € C[X]}

On admet alors et on pourra utiliser librement que :
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— si A, B € C[M], alors A et B commutent, et A+ B et AB appartiennent a C[M];
— SiQ € C[X] et si A e C[M], alors Q(A) € C[M].

IV.A- Une méthode de Newton matricielle
Q 26. Montrer que, pour toute racine complexe p de P’, la matrice M — I, est inversible. En déduire
que P'(M) est inversible.

Q 27. Montrer que le polynéme caractéristique yy; de M divise P?. En déduire que P(M) est
nilpotente.

Gréce a ces résultats, on peut définir la suite de matrices (M, ),en en posant :

MO - M
VneN, M, ., = M, — P(M,)P'(M,)!
On admet que, pour tout n € N :
— M, est bien définie et appartient a M (C);

— il existe B, € C[M] telle que P(M,) = (P(M))" B, ;
— la matrice P'(M,,) est inversible

Q 28. Montrer que la suite (M, ),en est stationnaire.

Q 29. Montrer que, pour tout n € N, les matrices M et M, commutent.

Q 30. On note A la limite de (M,,),en. Montrer que A est diagonalisable.

Q 31. Onpose N =M — A. Justifier que A et N commutent et que NN est nilpotente.

IV.B- Un calcul de racine carrée pour certaines matrices réelles symé-
triques.
Q 32. En utilisant le développement limité en 0 de la fonction x — /1 + 2, montrer qu'il existe
un polynome R, € R[X] tel que X7 divise 1 + X — R,(X).
Q 33. En déduire I'expression d'une racine carrée de I, + N lorsque N est une matrice nilpotente.

Pour les questions suivantes, on suppose que M est a coefficients réels et trigonalisable dans M, (R)
et que le spectre de M inclus dans RY.
On considere alors les matrices A et NV introduites dans la sous-partie IV.A..

Q 34. Justifier que A et N sont & coefficients réels et que A est diagonalisable dans M, (R).
Q 35. Montrer que le spectre de A est inclus dans R .

Q 36. Justifier que la méthode de Héron d’Alexandrie de la sous-partie II.C peut étre appliquée a
la matrice A afin d’obtenir une racine carrée A’ de A. En déduire 'expression d'une racine
carrée de M.




