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La présentation, la lisibilité, l’orthographe, la clarté et la précision des raisonnements entrent pour
une part importante dans l’appréciation des copies. Il faut souligner ou encadrer les résultats.
Bon travail !

Exercice 1 – b

Soit E un espace euclidien muni d’un produit scalaire noté ⟨., .⟩. On note ∥.∥ la norme associée à
ce produit scalaire. On dit qu’un projecteur de E est strict s’il n’est ni l’endomorphisme nul, ni
l’identité.

1. Soit p un projecteur de E.
(a) Démontrer que E = ker p ⊕ Im p.
(b) Soit p un projecteur orthogonal.

i. Montrer que pour tout x de E, ∥p(x)∥ ⩽ ∥x∥. Pour quels vecteurs x a-t-on égalité ?
ii. Montrer que pour tout x de E, ⟨p(x), x⟩ ⩾ 0. Pour quels vecteurs x a-t-on égalité ?

(c) Démontrer que p est un projecteur orthogonal si, et seulement si, p∗ = p.
2. On se place dans le cas où E = R2.

(a) Soit M =
(

a b
c d

)
. Démontrer que M est la matrice d’un projecteur strict orthogonal de

E dans une base orthonormée si, et seulement si,


d = 1 − a

b = c

a(1 − a) = b2

(b) Qu’impose cette dernière égalité pour la valeur de a ?

(c) Soit M =
(

a b
b 1 − a

)
la matrice d’un projecteur strict orthogonal de E dans une base

orthonormée. Calculer la matrice produit suivante :

N =
(

1 0
0 0

)(
a b
b 1 − a

)

Justifier que la matrice N est diagonalisable et que ses valeurs propres sont dans l’inter-
valle [0, 1].

(d) Soient p1 et p2 deux projecteurs orthogonaux stricts de E. Démontrer que l’endomor-
phisme p1 ◦ p2 est diagonalisable et que ses valeurs propres sont dans l’intervalle [0, 1].

3. Pour les étudiants à l’aise uniquement.
Soient p1 et p2 deux projecteurs orthogonaux stricts d’un espace euclidien de dimension n ⩾ 1.
(a) Déterminer l’endomorphisme adjoint de p1 ◦ p2 ◦ p1. En déduire que p1 ◦ p2 ◦ p1 est

diagonalisable et que ses valeurs propres sont dans l’intervalle [0, 1].
(b) Démontrer que le sous-espace vectoriel Im p1 est stable par p1 ◦ p2 ◦ p1.
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(c) Démontrer que le sous-espace vectoriel Im p1 est stable par l’endomorphisme p1 ◦ p2 et
que celui-ci induit sur Im p1 un endomorphisme diagonalisable dont les valeurs propres
sont dans l’intervalle [0, 1].

(d) Soit G = Im p1 + ker p2. Démontrer que G⊥ = ker p1 ∩ Im p2. Que vaut l’endomorphisme
p1 ◦ p2 sur G⊥ ?

(e) Démontrer que l’endomorphisme p1 ◦p2 est diagonalisable et que ses valeurs propres sont
dans l’intervalle [0, 1].

(f) Soit r2 le rang de p2. Démontrer que Tr(p1 ◦ p2) ⩽ r2. Étudier le cas d’égalité.

Exercice 2 – b

Si A, B, C, D sont quatre matrices de Mn(C), on note MA,B,C,D la matrice de M2n(C) définie par
blocs par

MA,B,C,D =
(

A B
C D

)
1. Soient A, B, C, D, E cinq matrices de Mn(C)

(a) Exprimer la matrice produit MA,B,C,DMIn,E,0n,In .
(b) On suppose la matrice A inversible. Justifier l’égalité :

det(MA,B,C,D) = det(A) det(D − CA−1B)

2. On suppose que les matrices A et C commutent.
(a) On suppose la matrice A inversible. Démontrer que det(MA,B,C,D) = det(AD − CB).
(b) On ne suppose plus la matrice A inversible.

i. Démontrer qu’il existe des matrices U et V dans Mn(C) telles que le polynôme
caractéristique de la matrice MA,B,C,D vérifie :

χMA,B,C,D
(λ) = det(λ2In + λU + V )

Exprimer U et V en fonction des matrices A, B, C et D.
ii. Démontrer que det(MA,B,C,D) = det(AD − BC).

3. Dans cette question, on suppose que A = D = In et que B et B sont des matrices à coefficients
réels tels que C = B⊤ . On pose S = MIn,B,B⊤ ,In

.
(a) Justifier que B⊤ B est une matrice symétrique positive.
(b) Exprimer le polynôme χS en fonction du polynôme χB⊤ B.
(c) En déduire que la matrice S est une matrice symétrique définie positive si, et seulement

si, les valeurs propres de la matrice B⊤ B sont toutes strictement inférieures à 1.
4. On considère la suite de matrices (An)n∈N∗ définies par récurrence par :

A1 =
(

2 i
i −2

)
et ∀n > 1, An =

(
2An−1 iAn−1
iAn−1 −2An−1

)

(a) Déterminer une relation de récurrence entre det(An) et det(An−1) pour n > 1.
(b) Exprimer det(An) en fonction de n, pour n ⩾ 1.
(c) Pour n > 1, exprimer le polynôme caractéristique χAn de la matrice An en fonction de

χAn−1 et χ−An−1 .
(d) Déterminer les valeurs propres de la matrice An pour n ⩾ 1.
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