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La présentation, la lisibilité, 'orthographe, la clarté et la précision des raisonnements entrent pour
une part importante dans 'appréciation des copies. Il faut souligner ou | encadrer| les résultats.
Bon travail !

POUR CE DEVOIR, IL EST DEMANDE DE RENDRE AU MOINS UN DES DEUX EXERCICES.

Exercice 1 I

Dans tout I’exercice, on considere un entier n € N*,

Partie I - Produit scalaire sur R,[X]

I.1 - Généralités
+oo
Pour tout couple (P, Q) € R,[X]?, on note : (P | Q) = / P#)Q(t)e " dt.
0
1. Justifier que l'intégrale définissant (P | Q) est convergente.

2. Montrer que I'application (. | .) : R, [X] X R,[X] — R est un produit scalaire.

1.2 - Calcul d’un produit scalaire
3. Soit k € [1,n]. A T'aide d’une intégration par parties, établir que :

—+o00 —+o00
/tke‘tdt:k / et dt
0 0

4. Conclure que (X* | 1) = k! pour tout entier k € [0,n].

Partie Il - Construction d’une base orthogonale

On considere I'application a définie sur R, [X] par :

VP eR,[X], a(P)=XP'+(1—X)P

I1.1 - Propriétés de application «

5. Montrer que « est un endomorphisme de R, [X].
6. Ecrire la matrice de a dans la base (L, X,...,X"™).

7. En déduire que « est diagonalisable et que Sp(a) = {—k | k € [0,n]}.



I1.2 - Vecteurs propres de ’application «

On fixe un entier k € [0, n].
8. Quelle est la dimension de ker(a + kIdg,(x)) ?

9. En déduire qu’il existe un unique polynéme P, € R,[X], de coefficient dominant égal a 1,
vérifiant a(Py) = —kPy.

10. Justifier que P, est de degré k.
11. Déterminer P, et P;. Vérifier que P, = X? —4X + 2.

I1.3 - Orthogonalité de la famille (Fy,...,F,)
On fixe un couple (P, Q) € R,[X]%.

12. Montrer que (a(P) | Q) = — +footP’(t)Q’(t)e_t dt.
0
13. En déduire que (a(P) | Q) = (P | a(Q)).

14. Montrer que (P, ..., P,) est une base orthogonale de R,[X]. On pourra utiliser les questions
9 et 13.

Partie 111 - Méthode de quadrature de Gauss

On admet que le polynéme P, admet n racines réelles distinctes que l'on note zy, ..., x,.
On souhaite montrer qu'il existe (Aq,...,\,) € R" tel que :

+o00
VP € R, [X], / et dt = Z NP(z (%)

15. Montrer qu'un n-uplet (Aq,...,\,) € R" vérifie (%) si et seulement si :

1 R | A\ 0!
T T2 Tn )\2 1!

e An (n—1)!

16. En déduire qu’il existe un unique n-uplet (A1,...,\,) € R™ vérifiant (k).
17. Déterminer un polynéme P € Ry, [X] tel que

“+00

/ P(t)e" dt # f: NP ().

0

Exercice 2 I

Soit n € N* et E = R,,[X]. On note (P, ..., P,) la base canonique de E, ou pour tout entier naturel
k, P, = X*. Soit (a;)je[o,n] une famille de réels distincts deux a deux.

Pour tout couple (P, Q) d’éléments de E, on pose (P|Q) = Z P(a;)Q

1. Vérifier que I'on définit ainsi un produit scalaire sur E.
2. Pour P € E, calculer (P|F).



X —
3. Pour j € [0,n], on considére le polyndme L;(X) =[] T

ke[on], ki Y

_a/k.

, o 1 sit=y
(a) Démontrer que, pour tout couple (4,7) de [0,n]?, L;(a;) = { , )
0 sinon

(b) Prouver que la famille B = (L;),c[o,»] est une famille orthogonale.
(
(d
(e) Déterminer »_ Lj.
=0

)

¢) En déduire que B est une base de E et qu’elle est orthonormale.
) Déterminer les composantes d’un polynéme P de E dans la base .
)

4. Soit H I'ensemble des polynémes P de FE tels que i P(a;) =0.
7=0

(a) Montrer que H est un sous-espace vectoriel de F.
(b) Déterminer H* et en déduire la dimension de H.

5. Soit () un polynoéme de F.

(a) Déterminer le projeté orthogonal de @Q sur H*.
(b) Déterminer la distance de @) au sous-espace vectoriel H.




