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La présentation, la lisibilité, 'orthographe, la clarté et la précision des raisonnements entrent pour une
part importante dans 'appréciation des copies. Il faut souligner ou | encadrer| les résultats.
Bon travail !

# : proche du cours, méthode a connaitre, exercice de structure classique... Les exercices # sont OBLIGA-
TOIRES.

¢ : probleme de concours, exercice pour chercher plus... Les exercices # sont facultatifs, mais bien évidem-
ment CONSEILLES.

Exercice 1 — & '

On considere deux entiers M € N\{0,1} et A € N*. On dispose d’un plateau de jeu infini sur lequel se
trouve un parcours composé de cases numérotées par les entiers naturels. Un pion se trouve initialement sur
la case numérotée 0 et il doit atteindre ou dépasser la case numérotée A pour terminer le jeu. A chaque tour
de jeu, le joueur utilise un ordinateur qui génere aléatoirement et uniformément un élément de I’ensemble
[0, M — 1] : le pion est avancé d’autant de cases que le nombre généré.

Dans la suite, on s’intéresse tout particulierement au nombre de tours de jeu nécessaire pour que le pion
atteigne ou dépasse la case numérotée A.

Pour modéliser cette situation, on se place sur un espace probabilisé (€2, A, P) et on considére une suite
(Xk)pen- de variables aléatoires réelles indépendantes de loi uniforme sur [0, M —1]. On considere également
la suite de variables aléatoires réelles (S,),, oy définie par Sy =0 et :

YneN*, S,=> X
k=1

On considere la variable aléatoire T définie de la fagon suivante :
— si pour tout n € N*, on a .S, < A, alors on pose T'=0;
— sinon, on pose T'=min{n € N* | S, > A}.

L’objectif de cet exercice est de déterminer ’espérance de la variable aléatoire T' dans deux cas particuliers.

Partie I - Préliminaires
1.1 - Modélisation

Dans cette sous-partie, on effectue le lien entre la situation présentée dans l'introduction et le modele
considéré ci-dessus.

Q1. Soit n € N*. Que représentent les variables aléatoires X, et S, dans le contexte de la situation
présentée ?

Q2. Que représente la variable aléatoire T 7

1.2 - Calcul de la somme d’une série entiére

On considere la fonction f :] —1,1[— R définie par : Vz €] — 1,1[, f(z)= =



Q3. Montrer que la fonction f est de classe C* sur | — 1, 1] et que :

p!
YpeN, Vzel-1,1], f(”’(w)Im

Q4. Soit p € N. Montrer que le rayon de convergence de la série entiere ( " ) x™ est égal a 1.

nzp
Q5. Soit p € N. En développant la fonction f en série entiere, déduire des questions précédentes 1’égalité
suivante :

+oo 2P
Vo €] —1,1], Z<p>$n:(1—x)1’+1

n=p

Partie II - Etude d’un premier cas

Dans cette partie uniquement, on suppose que M = 2.

I1.1 - Loi des variables aléatoires S, et T

Q6. Soit n € N*. Démontrer que S,, suit une loi binomiale de parameétres n et 1/2.
Q7. Quelles sont les valeurs prises par la variable aléatoire T 7

Q8. Soit k € N avec k > A. Exprimer I’événement (7' = k) en fonction des événements (Sy_1 = A — 1) et

(Xk = 1). En déduire que :
k-1 )1
P(T’“)<A—1>2If

Q9. Calculer P(T = 0).

I1.2 - Espérance de la variable aléatoire T

On déduit des résultats précédents que la fonction génératrice G de la variable aléatoire T est égale a la
somme de la série entiere Y P(T = k)2* sur son intervalle de convergence.
k=A

Q10. Déterminer la rayon de convergence Ry de la série entiere Y. P(T = k)z* et montrer que :
k=A

Vx €] — Rr, Ry, GT@ﬂ:Z(QTx)A

Q11. En déduire le nombre moyen de tours de jeu pour terminer notre partie.

Partie IIT - Etude d’un second cas

Dans cette partie uniquement, on suppose que A < M.

II1. 1 - Calcul de la probabilité P (S, < k)

Dans cette sous-partie, on pourra librement utiliser la formule suivante :

k
n+k—1~ n+1+k
V(k,n) € N?, Z( . >:< 1 )

=0
Q12. Soit n € N*. En considérant le systéeme complet d’événements ((Xp41 =0),...,(Xps1 =M — 1)),
montrer que :
k
VEE[0,A—1], P(Sur<k)=—3 P(S, <k—1)
) ) n+1l x M = n



Q13. Montrer par récurrence que pour tout n € N* on a :
1
Vke[0,A—1], P(Sy<k)=-— ( ntk )

IT1.2 - Espérance de la variable aléatoire T’

Q14. On suppose que P(T =0) =0.
Que peut-on dire des événements (T' > n) et (S, < A) pour tout n € N? En déduire que la variable
aléatoire T' admet une espérance et calculer sa valeur.

Exercice 2 — ¢ '

Dans tout ce probleme, n désigne un entier naturel supérieur ou égal a 2.
L’espace vectoriel R” est muni de sa structure euclidienne canonique et on note (-|-) son produit scalaire.
On pourra utiliser sans preuve les deux résultats suivants :

- le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure ;

- linverse d’une matrice triangulaire supérieure inversible est triangulaire supérieure.

A - Un exemple introductif

1 -3 4

Soit P=| 2 0 —1].On note ¢, ¢, et c3 les colonnes de P considérées comme des vecteurs de R3.
-2 3 1

1. Justifier que la matrice P est inversible. En déduire que la famille By = (¢1, ¢2,¢3) est une base de

R3.

2. Appliquer le procédé d’orthonormalisation de Gram-Schmidt a la base By = (¢1, ¢2, ¢3) pour construire
une base orthonormée By = (u1,ug,u3) de R3.

3. Soit Q la matrice de passage de la base canonique B de R3 & la base By. Justifier que Q! = Q7.

4. Déterminer la matrice de passage R de la base By a la base Bi. On constate que R est triangulaire

supérieure a éléments diagonaux strictement positifs.
5. Justifier que P = QR.

B - Cas général : décomposition QR

6. Soit P € M,,(R) une matrice inversible. En s’inspirant de la démarche mise en place sur I’exemple,
montrer qu’il existe une matrice () orthogonale et une matrice R triangulaire supérieure & coefficients
diagonaux strictement positifs telles que P = QR.

7. Soit b un vecteur de R™ et P une matrice inversible de M,,(R). Expliquer I'intérét de la décomposition
P = QR, avec (Q orthogonale et R triangulaire supérieure a coefficients diagonaux strictement positifs,
pour résoudre le systéme linéaire Px = b, d’inconnue z € R".

Les deux questions qui suivent permettent de démontrer 'unicité de la décomposition précédente.

8. Soit M € M, (R) une matrice a la fois orthogonale et triangulaire supérieure a coefficients diagonaux
strictement positifs. En raisonnant de proche en proche de la premiere a la derniere colonne de M,
montrer que M = I,,.

9. On considére quatre matrices Q1, Q2, R1, Ra de M, (R) telles que Q1 et Q2 sont orthogonales, R;
et Ro sont triangulaires supérieures a coeflicients diagonaux strictement positifs et Q121 = Q2Ro.
Montrer que Q1 = Q)2 et R1 = Rs.



C - Décomposition d’une matrice dont le polyndme caractéristique est scindé sur R

10. Soit A une matrice de M,,(R) dont le polynéme caractéristique x4 est scindé sur R. En utilisant la
décomposition QR d’une matrice inversible bien choisie, démontrer qu’il existe une matrice
Q € M,,(R) orthogonale et une matrice T € M, (R) triangulaire supérieure telles que A = QT Q7.

11. Donner un exemple de matrice A € M3(R) diagonalisable et une décomposition A = QTQT avec
Q € M3(R) orthogonale et T' € M3(R) triangulaire supérieure a éléments diagonaux strictement
positifs, mais non diagonale.

12. Donner un exemple de matrice A € M3(R) diagonalisable et une décomposition A = QT'QT avec
Q € M3(R) orthogonale et T' € M3(R) diagonale a éléments diagonaux strictement positifs.




