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La présentation, la lisibilité, l’orthographe, la clarté et la précision des raisonnements entrent pour une
part importante dans l’appréciation des copies. Il faut souligner ou encadrer les résultats.
Bon travail !

b : proche du cours, méthode à connaître, exercice de structure classique... Les exercices b sont obliga-
toires.
E : problème de concours, exercice pour chercher plus... Les exercices E sont facultatifs, mais bien évidem-
ment conseillés.

Exercice 1 – b

On considère deux entiers M ∈ N\{0, 1} et A ∈ N∗. On dispose d’un plateau de jeu infini sur lequel se
trouve un parcours composé de cases numérotées par les entiers naturels. Un pion se trouve initialement sur
la case numérotée 0 et il doit atteindre ou dépasser la case numérotée A pour terminer le jeu. À chaque tour
de jeu, le joueur utilise un ordinateur qui génère aléatoirement et uniformément un élément de l’ensemble
J0, M − 1K : le pion est avancé d’autant de cases que le nombre généré.
Dans la suite, on s’intéresse tout particulièrement au nombre de tours de jeu nécessaire pour que le pion
atteigne ou dépasse la case numérotée A.
Pour modéliser cette situation, on se place sur un espace probabilisé (Ω, A, P ) et on considère une suite
(Xk)k∈N∗ de variables aléatoires réelles indépendantes de loi uniforme sur J0, M−1K. On considère également
la suite de variables aléatoires réelles (Sn)n∈N définie par S0 = 0 et :

∀n ∈ N∗, Sn =
n∑

k=1
Xk

On considère la variable aléatoire T définie de la façon suivante :
— si pour tout n ∈ N∗, on a Sn < A, alors on pose T = 0 ;
— sinon, on pose T = min {n ∈ N∗ | Sn ⩾ A}.

L’objectif de cet exercice est de déterminer l’espérance de la variable aléatoire T dans deux cas particuliers.

Partie I - Préliminaires

I.1 - Modélisation

Dans cette sous-partie, on effectue le lien entre la situation présentée dans l’introduction et le modèle
considéré ci-dessus.
Q1. Soit n ∈ N∗. Que représentent les variables aléatoires Xn et Sn dans le contexte de la situation

présentée ?
Q2. Que représente la variable aléatoire T ?

I.2 - Calcul de la somme d’une série entière

On considère la fonction f :] − 1, 1[→ R définie par : ∀x ∈] − 1, 1[, f(x) = 1
1−x
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Q3. Montrer que la fonction f est de classe C∞ sur ] − 1, 1[ et que :

∀p ∈ N, ∀x ∈] − 1, 1[, f (p)(x) = p!
(1 − x)p+1

Q4. Soit p ∈ N. Montrer que le rayon de convergence de la série entière
∑

n⩾p

(
n
p

)
xn est égal à 1.

Q5. Soit p ∈ N. En développant la fonction f en série entière, déduire des questions précédentes l’égalité
suivante :

∀x ∈] − 1, 1[,
+∞∑
n=p

(
n
p

)
xn = xp

(1 − x)p+1

Partie II - Étude d’un premier cas

Dans cette partie uniquement, on suppose que M = 2.

II.1 - Loi des variables aléatoires Sn et T

Q6. Soit n ∈ N∗. Démontrer que Sn suit une loi binomiale de paramètres n et 1/2.
Q7. Quelles sont les valeurs prises par la variable aléatoire T ?
Q8. Soit k ∈ N avec k ⩾ A. Exprimer l’événement (T = k) en fonction des événements (Sk−1 = A − 1) et

(Xk = 1). En déduire que :

P (T = k) =
(

k − 1
A − 1

)
1
2k

Q9. Calculer P (T = 0).

Il.2 - Espérance de la variable aléatoire T

On déduit des résultats précédents que la fonction génératrice GT de la variable aléatoire T est égale à la
somme de la série entière

∑
k⩾A

P (T = k)xk sur son intervalle de convergence.

Q10. Déterminer la rayon de convergence RT de la série entière
∑

k⩾A
P (T = k)xk et montrer que :

∀x ∈] − RT , RT [, GT (x) =
(

x

2 − x

)A

Q11. En déduire le nombre moyen de tours de jeu pour terminer notre partie.

Partie III - Étude d’un second cas

Dans cette partie uniquement, on suppose que A ⩽ M .

III. 1 - Calcul de la probabilité P (Sn ⩽ k)

Dans cette sous-partie, on pourra librement utiliser la formule suivante :

∀(k, n) ∈ N2,
k∑

ℓ=0

(
n + k − ℓ

n

)
=
(

n + 1 + k
n + 1

)
Q12. Soit n ∈ N∗. En considérant le système complet d’événements ((Xn+1 = 0) , . . . , (Xn+1 = M − 1)),

montrer que :

∀k ∈ J0, A − 1K, P (Sn+1 ⩽ k) = 1
M

k∑
ℓ=0

P (Sn ⩽ k − ℓ)
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Q13. Montrer par récurrence que pour tout n ∈ N∗, on a :

∀k ∈ J0, A − 1K, P (Sn ⩽ k) = 1
Mn

(
n + k

n

)

III.2 - Espérance de la variable aléatoire T

Q14. On suppose que P (T = 0) = 0.
Que peut-on dire des événements (T > n) et (Sn < A) pour tout n ∈ N ? En déduire que la variable
aléatoire T admet une espérance et calculer sa valeur.

Exercice 2 – E

Dans tout ce problème, n désigne un entier naturel supérieur ou égal à 2.
L’espace vectoriel Rn est muni de sa structure euclidienne canonique et on note ⟨·|·⟩ son produit scalaire.
On pourra utiliser sans preuve les deux résultats suivants :
- le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure ;
- l’inverse d’une matrice triangulaire supérieure inversible est triangulaire supérieure.

A - Un exemple introductif

Soit P =

 1 −3 4
2 0 −1

−2 3 1

. On note c1, c2, et c3 les colonnes de P considérées comme des vecteurs de R3.

1. Justifier que la matrice P est inversible. En déduire que la famille B1 = (c1, c2, c3) est une base de
R3.

2. Appliquer le procédé d’orthonormalisation de Gram-Schmidt à la base B1 = (c1, c2, c3) pour construire
une base orthonormée B2 = (u1, u2, u3) de R3.

3. Soit Q la matrice de passage de la base canonique B de R3 à la base B2. Justifier que Q−1 = QT .
4. Déterminer la matrice de passage R de la base B2 à la base B1. On constate que R est triangulaire

supérieure à éléments diagonaux strictement positifs.
5. Justifier que P = QR.

B - Cas général : décomposition QR

6. Soit P ∈ Mn(R) une matrice inversible. En s’inspirant de la démarche mise en place sur l’exemple,
montrer qu’il existe une matrice Q orthogonale et une matrice R triangulaire supérieure à coefficients
diagonaux strictement positifs telles que P = QR.

7. Soit b un vecteur de Rn et P une matrice inversible de Mn(R). Expliquer l’intérêt de la décomposition
P = QR, avec Q orthogonale et R triangulaire supérieure à coefficients diagonaux strictement positifs,
pour résoudre le système linéaire Px = b, d’inconnue x ∈ Rn.

Les deux questions qui suivent permettent de démontrer l’unicité de la décomposition précédente.
8. Soit M ∈ Mn(R) une matrice à la fois orthogonale et triangulaire supérieure à coefficients diagonaux

strictement positifs. En raisonnant de proche en proche de la première à la dernière colonne de M ,
montrer que M = In.

9. On considère quatre matrices Q1, Q2, R1, R2 de Mn(R) telles que Q1 et Q2 sont orthogonales, R1
et R2 sont triangulaires supérieures à coefficients diagonaux strictement positifs et Q1R1 = Q2R2.
Montrer que Q1 = Q2 et R1 = R2.
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C - Décomposition d’une matrice dont le polynôme caractéristique est scindé sur R

10. Soit A une matrice de Mn(R) dont le polynôme caractéristique χA est scindé sur R. En utilisant la
décomposition QR d’une matrice inversible bien choisie, démontrer qu’il existe une matrice
Q ∈ Mn(R) orthogonale et une matrice T ∈ Mn(R) triangulaire supérieure telles que A = QTQT .

11. Donner un exemple de matrice A ∈ M3(R) diagonalisable et une décomposition A = QTQT avec
Q ∈ M3(R) orthogonale et T ∈ M3(R) triangulaire supérieure à éléments diagonaux strictement
positifs, mais non diagonale.

12. Donner un exemple de matrice A ∈ M3(R) diagonalisable et une décomposition A = QTQT avec
Q ∈ M3(R) orthogonale et T ∈ M3(R) diagonale à éléments diagonaux strictement positifs.

4


