
Exponentielle d’un endomorphisme en dimension finie, d’une matrice

Dans ce chapitre, K = R ou C. E désigne un K-espace vectoriel normé de dimension finie.

1 Exponentielle de matrice

1.1 norme sous-multiplicative

Exercice 1 : Montrer que ∥.∥ donnée par ∥A∥ = max
1⩽i⩽n

n∑
j=1

|ai,j | est une norme sous-multiplicative

sur Mn(K) (on pourra admettre le fait que c’est une norme). Quelle autre norme sous-multiplicative
connaissez-vous dans Mn(K) ?

Dans toute la suite, on munit Mn(K) d’une norme sous-multiplicative.

Définition - propriété 1

Pour A ∈ Mn(K), la série ∑ Ak

k! converge absolument. Sa somme est appelée exponentielle de la

matrice A et est notée exp(A) ou eA : exp(A) =
+∞∑
k=0

Ak

k! . Il s’agit d’une matrice.

exp(In) = exp(0n) =

1.2 exponentielle et réduction

Propriété 1

Pour D matrice diagonale, égale à

 d1 (0)
. . .

(0) dn

, on a exp(D) =

ed1 (0)
. . .

(0) edn

.

Propriété 2 – cas de matrices semblables

Soit P ∈ GLn(K) et A et B matrices semblables de Mn(K), telles que A = PBP −1. Alors exp(A)
et exp(B) sont semblables et

exp(A) = P exp(B)P −1

Méthode – cas d’une matrice diagonalisable

Si A est diagonalisable, pour calculer exp(A), on peut diagonaliser A : A = PDP −1 et utiliser

exp(A) = P exp(D)P −1

Exercice 2 : Soit A =
(

0 π
−π 0

)
.

1. Donner Sp(A) dans le cas où A ∈ M2(C), où A ∈ M2(R).
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2. Diagonaliser A dans M2(C). En déduire eA et son spectre.

Propriété 3

• Si A ∈ Mn(R) est trigonalisable, Sp(exp(A)) = {eλ, λ ∈ Sp(A)}.
• Si A ∈ Mn(C), A est trigonalisable et Sp(exp(A)) = {eλ, λ ∈ Sp(A)}.

2 Exponentielle d’un endomorphisme

Définition - propriété 2

Pour u endomorphisme de E, la série
∑ uk

k! converge absolument. Sa somme est appelée exponen-
tielle de u et est notée eu ou exp(u). Il s’agit d’un endomorphisme de E.

eu =
+∞∑
k=0

uk

k!

Propriété 4

Soit B une base de E et A = matB(u). La matrice de exp(u) dans la base B est exp(A).

3 Continuité de l’exponentielle

Propriété 5

• L’application A 7→ eA est continue sur Mn(K).
• L’application u 7→ eu est continue sur L (E).

4 Dérivabilité de t 7→ etA

Nous avons déjà vu que pour A matrice carrée fixée, f : t 7→ etA était dérivable sur R et

∀t ∈ R, f ′(t) = etAA = AetA

5 À suivre...
Il nous restera à montrer que pour A et B matrices qui commutent, et a et b endomorphismes qui
commutent, on a :

eA+B = eAeB et ea+b = eaeb
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6 Annexe : quelques éléments de démonstrations
Définition-propriété 1
On a

∥∥∥Ak

k!

∥∥∥ ⩽ ∥A∥k

k! . Il faut éventuellement réexpliquer ∥Ak∥ ⩽ ∥A∥k pour notre norme sous-multiplicative.

Propriété 1

m∑
k=0

Dk

k! =


m∑

k=0

dk
1

k! (0)

. . .

(0)
m∑

k=0

dk
1

k!

 et il n’y a plus qu’à faire tendre m vers +∞.

Remarque : limite d’une matrice a été rencontrée dans Espaces vectoriels normés.

Propriété 2
Pour tout k ∈ N, Ak = PBkP−1 et donc

m∑
k=0

Ak

k! = P (
m∑

k=0

Bk

k! )P−1. L’application M 7→ PMP−1 est une application

linéaire sur Mn(K), espace de dimension finie, donc est continue. On obtient donc en faisant tendre m vers l’infini :
exp(A) = P exp(B)P−1.

Propriété 3
Soit A trigonalisable de valeurs propres λ1, . . . , λn comptées avec multiplicité. Il existe P inversible et T triangulaire supé-
rieure telle que A = PTP−1.

m∑
k=0

Ak

k! = P (
m∑

k=0

T k

k! )P−1

on a vu en algèbre que T k était triangulaire supérieure et que ses coefficients diagonaux étaient les λk
i

= P


m∑

k=0

λk
1

k! (∗)

. . .

(0)
m∑

k=0

λk
1

k!

P−1

Soit T l’ensemble des matrices triangulaires supérieures. T est un sous-espace vectoriel d’un espace vectoriel normé de di-

mension finie, donc T est fermé. Donc la limite des matrices


m∑

k=0

λk
1

k! (∗)

. . .

(0)
m∑

k=0

λk
1

k!

 (qui existe, c’est lim
m→+∞

m∑
k=0

T k

k! = eT )

est dans T , autrement dit est triangulaire supérieure.

Par continuité de M 7→ PMP−1 (application linéaire en dimension finie), eA = P

e
λ1 (∗∗)

. . .
(0) eλn

P−1 et on lit les

valeurs propres sur la diagonale.

Définition-propriété 2
Semblable à celle sur les matrices en prenant une norme subordonnée (par exemple, pour la sous-multiplicativité) dans L (E).

Propriété 4
Pour tout m, matB(

m∑
k=0

uk

k! ) =
m∑

k=0

(matB(u)k

k! .

Le membre de droite tend vers exp(matB(u)). Qu’en est-il du membre de gauche ?

On introduit ψ :
(

L (E) → Mn(K)
f 7→ matB(f)

)
. ψ est une application linéaire en dimension finie donc ψ est continue. Donc le

membre de gauche tend vers matB(eu).

Propriété 5
Soit r > 0. Montrons que

∑
fk converge normalement sur Bf (0, r) où fk : A 7→ Ak

k! .
Pour A ∈ Bf (0, r), ∥ Ak

k! ∥ ⩽ ∥A∥k

k! ⩽ rk

k! , donc

∥fk∥∞, Bf (0,r) ⩽
rk

k!
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et il y a convergence normale, donc uniforme.
Les fonctions fk : A 7→ Ak

k! sont toutes continues sur Mn(K).
Par le théorème de transmission de continuité, exp est continue sur Bf (0, r). Ceci étant valable pour tout r, exp est continue
sur Mn(K).

On peut rédiger de même la continuité de exp sur L (E).
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