
Endomorphismes d’un espace euclidien

Les attentes

1. Matrices orthogonales : définition par A⊤ A = In, caractérisation
par le caractère orthonormal de la famille des colonnes, des lignes.
Interprétation comme matrice de changement de base orthonormée.

2. Savoir définir l’adjoint d’un endomorphisme. Propriétés (linéarité,
adjoint d’un inverse, adjoint d’une composée, involutivité).

3. Matrice de l’adjoint dans une base orthonormée.
4. Si F est stable par u, alors ...
5. Étude des endomorphismes autoadjoints (u∗ = u). Théorème spec-

tral.
6. Cas particulier des projecteurs orthogonaux.
7. Endomorphisme autoadjoint positif, défini positif. Caractérisation

spectrale. Notations S+(E), S++(E).
8. Matrice symétrique positive, définie positive. Caractérisation spec-

trale.
9. Étude des isométries : définition par la conservation des normes.

Propriétés : u∗ = u−1, conservation du produit scalaire, conservation
des bases orthonormées.

10. Groupe orthogonal et groupe spécial orthogonal.
11. Théorème de réduction des isométries dans une base orthonormée.

1. Théorème de représentation des formes linéaires dans un espace eu-
clidien.

2. Description des matrices orthogonales directes et indirectes de taille
2. Classification des isométries d’un plan euclidien.

3. Isomorphisme de U sur SO2(R). Le groupe SO2(R) est commutatif.

Dans tout le chapitre E désigne un espace euclidien, muni du produit scalaire ⟨., .⟩, et u ∈ L (E).
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1 Matrice d’un endomorphisme dans une base orthonormée
Pour tout vecteur de E, on a la décomposition dans une base orthonormée (e1, . . . , en) :

x =
n∑

i=1
⟨x, ei⟩ei

Donc les coordonnées de u(ej) relativement aux ei valent ⟨u(ej), ei⟩.

mat(e1,...,en)(u) =



u(e1) u(e2) u(en)
⟨u(e1), e1⟩ ⟨u(e2), e1⟩ ⟨u(en), e1⟩ e1
⟨u(e1), e2⟩ ⟨u(e2), e2⟩ ⟨u(en), e2⟩ e2

...
...

⟨u(e1), en⟩ ⟨u(e2), en⟩ ⟨u(en), en⟩ en

 = M

Calculons M⊤ M :

2 Matrices orthogonales

2.1 caractérisation des matrices orthogonales

Définition 1

Une matrice A ∈ Mn(R) est orthogonale si A⊤ A = In = AA⊤ .

Autrement dit, A est une matrice orthogonale si A est inversible, d’inverse égal à sa transposée. Comme
d’habitude, il suffit d’avoir A⊤ A = In ou AA⊤ = In pour avoir A⊤ A = In = AA⊤ .
In est une matrice orthogonale.
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Soit une matrice de passage P = P B′
B entre deux bases orthonormées B et B′ de E.

P = P B′
B =

P −1 = P B
B′ =

�



�
	P ⊤ P = In = PP ⊤

Propriété 1

Soit A ∈ Mn(R). Les assertions suivantes sont équivalentes :
1. A est une matrice orthogonale
2. la famille (C1, . . . , Cn) des colonnes de A est une base orthonormée de Mn,1(R)
3. la famille (L1, . . . , Ln) des lignes de A est une base orthonormée de M1,n(R)
4. A est la matrice de passage entre deux bases orthonormées.

Définition - propriété 1

Deux matrices A, B ∈ Mn(R) sont orthogonalement semblables s’il existe une matrice orthogonale
P telle que

B = P −1AP = P ⊤ AP

A et B représentent alors le même endomorphisme dans deux bases orthonormales.

P Exercice 1 : Soit A une matrice orthogonale. Montrer que Sp(A) ⊂ {−1, 1}. On donnera deux
réponses :

— l’une avec la connaissance des isométries,
— l’autre par le calcul de ∥AX∥2.

2.2 groupe orthogonal

Si A est une matrice orthogonale, det(A⊤ A) = det(In), donc (det(A))2 = det(A⊤ ) det(A) = 1 et donc
det(A) = ±1. Ceci nous amène à distinguer deux types de matrices orthogonales.
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Définition - propriété 2

• L’ensemble des matrices orthogonales de Mn(R) est un sous-groupe de GLn(R), appelé groupe
orthogonal et noté On(R) ou O(n).

• Une matrice orthogonale A est dite positive, ou directe, si det A = 1.
L’ensemble des matrices orthogonales positives est un sous-groupe de GLn(R), appelé groupe
spécial orthogonal et noté SOn(R) ou SO(n).

• Une matrice orthogonale A est dite négative, ou indirecte, si det A = −1.
L’ensemble des matrices orthogonales négatives n’est pas un groupe.

P Exercice 2 : Montrer que On(R) et SOn(R) sont des compacts.

2.3 orientation d’un espace vectoriel normé de dimension finie

Soient B et B′ deux bases orthonormales de E et P la matrice de passage de B à B′. On a vu que P était
une matrice orthogonale, donc son déterminant est égal à 1 ou à −1.
On dit que B et B′ définissent la même orientation si det(P ) = 1.
Orienter l’espace consiste à choisir arbitrairement une base orthonormale de E. Toutes les bases qui
définissent la même orientation sont dites directes. Les autres sont dites indirectes.
Orienter l’espace revient donc à choisir une des deux classes d’équivalence associées à la relation d’équi-
valence définie par « B R B′ si et seulement si det(P B′

B ) = 1 ».

— Par convention, les bases orthonormales directes de R3 sont celles
qui respectent la règle de la main droite.

— En pratique, dans Rn, on choisit toujours la base canonique comme
base directe de référence.

— Pour E espace euclidien orienté et B et B′ bases orthonormées di-
rectes de E, on a detB = detB′ . Cela vient de la formule de change-
ment de base pour les déterminants :
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3 Adjoint d’un endomorphisme

Théorème 1 – représentation des formes linéaires

Pour toute forme linéaire φ, il existe un unique vecteur a ∈ E tel que :

∀x ∈ E, φ(x) = ⟨a, x⟩

Définition - propriété 3

Soit u ∈ L (E). Il existe un unique endomorphisme u∗ de E vérifiant :

∀x, y ∈ E, ⟨u(x), y⟩ = ⟨x, u∗(y)⟩

Cet endomorphisme u∗ s’appelle l’adjoint de u.

Par exemple, Id∗ = et 0∗ =

Propriété 2 – propriétés de u 7→ u∗

Linéarité : l’application u 7→ u∗ est linéaire.
Involution : l’application u 7→ u∗ est involutive, c’est-à-dire que (u∗)∗ = u.
Composition : (u ◦ w)∗ = w∗ ◦ u∗.
Inversibilité : si u est bijective, u∗ l’est aussi et (u∗)−1 = (u−1)∗.

Exercice 3 : Soit u un endomorphisme d’un espace euclidien E. Montrer que ker u∗ = (Im u)⊥ et que
Im u∗ = (ker u)⊥.

Propriété 3

Soit u ∈ L (E) et B une base orthonormale de E. On a matB(u∗) = matB(u)⊤ .

Il s’ensuit que les endomorphismes u et u∗ ont même rang, même déterminant, même trace et même
polynôme caractéristique.

Propriété 4

Si F est un sous-espace vectoriel de E stable par u, alors F ⊥ est stable par u∗.
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4 Endomorphismes autoadjoints et matrices symétriques réelles

4.1 généralités

Définition 2

On dit qu’un endomorphisme u ∈ L (E) est autoadjoint si u∗ = u, c’est-à-dire si :

∀(x, y) ∈ E2, ⟨u(x), y⟩ = ⟨x, u(y)⟩

On note S(E) l’ensemble des endomorphismes autoadjoints.

Par exemple, Id et plus généralement α Id (α ∈ R), sont autoadjoints.

Propriété 5

Soit u ∈ L (E) et soit B une base orthonormée de E.

u ∈ S(E) ⇔ matB(u) ∈ Sn(R)

Un endomorphisme autoadjoint est parfois appelé endomorphisme symétrique, en vertu de la propriété
précédente, et cela explique la notation S(E).

Propriété 6

S(E) est un sous-espace vectoriel de L (E), et dim S(E) = n(n + 1)
2 .

4.2 réduction des endomorphismes autoadjoints

Rappelons que si F est stable par u, alors F ⊥ est stable par u∗. Dans le cas d’un endomorphisme
autoadjoint, nous avons donc :

Propriété 7

Soit u ∈ S(E). Si un sous-espace vectoriel F de E est stable par u, alors F ⊥ est aussi stable par u.

Propriété 8

Les sous-espaces propres d’un endomorphisme autoadjoint sont deux à deux orthogonaux.

Théorème 2 – Théorème spectral

Si u est un endomorphisme autoadjoint de E, alors u est diagonalisable dans une base orthonormale.
Plus précisément, pour u ∈ L (E), les trois assertions suivantes sont équivalentes :

1. u est autoadjoint.
2. Il existe une base orthonormée de E constituée de vecteurs propres de u.

3. E =
⊥⊕

λ∈Sp(u)
Eλ(u)
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Corollaire 1

Toute matrice symétrique réelle A est orthogonalement diagonalisable : il existe une matrice
orthogonale P et une matrice diagonale D telles que

A = PDP ⊤

Exercice 4 : Le résultat précédent ne s’étend pas dans C. Montrer en effet que la matrice symétrique

A =
(

2 i
i 0

)
n’est pas diagonalisable.

Exercice 5 : Montrer que pour M ∈ Mn(R), M⊤ M est diagonalisable.

Exercice 6 : Diagonaliser orthogonalement J =

1 1 1
1 1 1
1 1 1

.

Exercice 7 : Soit u un endomorphisme autoadjoint d’un espace euclidien E, et f : x 7→ ⟨u(x), x⟩. En
utilisant le théorème spectral, montrer que le minimum de f sur S = {x ∈ E, ∥x∥ = 1} est égal à la plus
petite valeur propre de u, et que le maximum de f sur S est égal à la plus grande valeur propre de u.

4.3 endomorphismes autoadjoints positifs, définis positifs

Définition 3

Soit u ∈ S(E).
• On dit que u est autoadjoint positif si : ∀x ∈ E, ⟨u(x), x⟩ ⩾ 0.
• On dit que u est autoadjoint défini positif si :

∀x ∈ E, ⟨u(x), x⟩ ⩾ 0 et (⟨u(x), x⟩ = 0 ⇒ x = 0)

On note S+(E) l’ensemble des endomorphismes autoadjoints positifs de E et S++(E) l’ensemble des
endomorphismes autoadjoints définis positifs de E.

Propriété 9 – Caractérisation spectrale

Soit u un endomorphisme autoadjoint.

u ∈ S+(E) ⇔ Sp(u) ⊂ R+

u ∈ S++(E) ⇔ Sp(u) ⊂ R+∗
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Définition - propriété 4 – Caractérisation spectrale

Soit A ∈ Sn(R). On dit que A est une matrice :
• symétrique positive, et on note A ∈ S+

n (R), si :

∀X ∈ Mn,1(R), X⊤ AX = ⟨AX, X⟩ ⩾ 0 ou encore Sp(A) ⊂ R+

• symétrique définie positive, et on note A ∈ S++
n (R), si :{

∀X ∈ Mn,1(R) X⊤ AX = ⟨AX, X⟩ ⩾ 0
X⊤ AX = 0 ⇒ X = 0

ou encore Sp(A) ⊂ R+∗

Par calcul matriciel, nous obtenons des formes quadratiques (hors-programme) :

X⊤ AX =

et si D est une matrice diagonale,

X⊤ DX =

P Exercice 8 : Soit M une matrice symétrique réelle d’ordre n. Montrer que (1) ⇔ (2), où :
1. M ∈ S+

n (R)
2. il existe une matrice R symétrique réelle telle que M = R2.

5 Isométries vectorielles d’un espace euclidien

5.1 généralités sur les isométries

Dans d’anciens sujets de concours, vous pouvez rencontrer la terminologie automorphisme orthogonal à
la place de isométrie vectorielle.

Définition - propriété 5

Soit u un endomorphisme de E. Les assertions suivantes sont équivalentes :
1. u conserve la norme : ∀x ∈ E, ∥u(x)∥ = ∥x∥.
2. u conserve le produit scalaire : ∀x, y ∈ E, ⟨u(x), u(y)⟩ = ⟨x, y⟩.
3. u conserve les bases orthonormées : pour (e1, . . . , en) base orthonormée de E,

(u(e1), . . . , u(en)) est une base orthonormée de E.
On dit alors que u est une isométrie vectorielle de E.

Par exemple,
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Propriété 10

L’ensemble des isométries vectorielles de E est un sous-groupe de GL(E), appelé groupe orthogonal
de E et noté O(E).

Propriété 11

Soit u un endomorphisme de E.

u est une isométrie vectorielle ⇔
{

u est bijectif
u−1 = u∗

Propriété 12

Soit u un endomorphisme de E.

u est une isométrie ⇔ la matrice de u dans toute base orthonormale est orthogonale
⇔ il existe une base orthonormale dans laquelle la matrice de u

est orthogonale

Il s’ensuit que le déterminant d’une isométrie vaut 1 ou −1.

Définition - propriété 6

• Une isométrie u est dite positive, ou directe, si son déterminant vaut 1.
L’ensemble des isométries positives est un sous-groupe de GL(E), appelé groupe spécial or-
thogonal et noté SO(E).

• Une isométrie u est dite négative, ou indirecte, si son déterminant vaut −1. L’ensemble des
isométries négatives n’est pas un groupe.

Remarques :
— Pour B base orthonormée de E, on a les équivalences suivantes :

u ∈ SO(E) ⇔
{

u ∈ O(E)
det u = 1

⇔
{

matB(u) ∈ On(R)
det matB(u) = 1

⇔ matB(u) ∈ SOn(R)

— Par formule sur les déterminants,

detB(u(B′)) = det(u) × detB(B′)

donc u transforme une base orthonormale directe de E en base orthonormale directe si, et seulement
si, u ∈ SO(E).
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5.2 isométries vectorielles en dimension 2
Propriété 13

O2(R) est l’ensemble des matrices de la forme R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
et S(θ) =

(
cos θ sin θ
sin θ − cos θ

)
avec θ ∈ R.
Plus précisément,

M ∈ SO2(R) ⇔ ∃θ ∈ R, M = R(θ)
M ∈ O2(R) \ SO2(R) ⇔ ∃θ ∈ R, M = S(θ)

Propriété 14

Pour θ, θ′ réels, R(θ)R(θ′) = R(θ + θ′). Le groupe SO2(R) est commutatif et isomorphe à U.

Propriété 15

Ici E est un espace euclidien orienté de dimension 2. Soit u ∈ O(E).
• Si u ∈ SO(E), il existe θ ∈ R, unique modulo 2π, tel que pour toute base orthonormée directe

B, on ait matB(u) = R(θ). On dit que u est une rotation d’angle θ.

• Si u ∈ O(E) \ SO(E), alors il existe une base orthonormée dans laquelle mat(u) =
(

1 0
0 −1

)
,

et u est une réflexion.

5.3 réduction des isométries

5.3.1 cas général

Énonçons deux lemmes nécessaires à la démonstration du « gros » théorème de réduction :

Lemme 1

Pour u ∈ O(E), Sp(u) ⊂ {−1, 1}.

Lemme 2

Si F est stable par l’isométrie vectorielle u, alors F ⊥ est aussi stable par u.

Théorème 3

Soit une isométrie vectorielle u ∈ O(E). Il existe une base orthonormée de E dans laquelle la
matrice de u est diagonale par blocs, les blocs diagonaux étant de la forme (1), (−1) et R(θ) avec
θ ∈ R \ πZ.
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Autrement dit, il existe une base orthonormée de E dans laquelle la matrice de u est de la forme :
Ip

−Iq (0)
R(θ1)

(0) . . .
R(θr)

 avec (θ1, . . . , θr) ∈ (R \ πZ)r

Corollaire 2

Soit A ∈ On(R). Alors il existe une matrice P ∈ On(R) et une matrice D diagonale par blocs, les
blocs diagonaux étant de la forme (1), (−1) et R(θ) avec θ ∈ R \ πZ, telles que A = PDP ⊤ .

5.3.2 réduction des isométries positives en dimension 3

Dans ce paragraphe, E est un espace euclidien orienté de dimension 3. Par le théorème de réduction,
quand on enlève les redondances, la matrice de u isométrie de E est, dans une certaine base orthonormée,

de la forme
(

±1 0
0 R(θ)

)
, θ ∈ R.

Soit u ∈ SO(R3). Il existe une base orthonormée de R3 dans laquelle la matrice de u est de la

forme
(

1 0
0 R(θ)

)
, θ ∈ R. On dit que u est une rotation d’angle θ.

Il existe une droite D et un plan P = D⊥ tel que uD = IdD et uP soit une rotation.

Conformément au programme, la pratique du calcul des éléments géométriques d’un élément de S03(R)
n’est pas un attendu du programme. Terminons tout de même par un exemple.

Exercice 9 : Soit A =

0 0 1
1 0 0
0 1 0

 et u l’endomorphisme de R3 canoniquement associé à A. Détermi-

ner les caractéristiques de u en complétant les questions suivantes.

• u est une isométrie car :
• u est une isométrie positive car :

• L’ensemble des invariants de u est D = Vect(n), où n =
• Pour P = D⊥, uP est par propriété une rotation. Son angle θ vérifie :
• On prend b2 = (1, 1, 1), b2 = (1, −1, 0). Proposer b3 tel que (b1, b2, b3) soit une base orthonormée

directe de R3. En travaillant dans le plan P = Vect(b2, b3), déterminer finalement θ.
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6 Projecteurs orthogonaux et symétries orthogonales

Définition 4
On appelle projecteur orthogonal de E tout projecteur sur un sous-espace vectoriel F et parallèle-
ment à F ⊥.
On appelle symétrie orthogonale de E toute symétrie par rapport à un sous-espace vectoriel F
parallèlement à F ⊥.
On appelle réflexion de E toute symétrie orthogonale par rapport à un hyperplan de E.

Exercice 10 : Soient H un hyperplan de E de vecteur normal n⃗ et s la réflexion par rapport à H. Donner
l’expression de s(x) pour x ∈ E.

Propriété 16

Soit p un projecteur de E et B une base orthonormée de E. Les assertions suivantes sont équi-
valentes :

1. p est un projecteur orthogonal.
2. ker p = (Im p)⊥ (à retenir sur un schéma).
3. p est un endomorphisme autoadjoint.
4. matB(p) est une matrice symétrique.

Exercice 11 :
1. Montrer qu’une symétrie de E est une symétrie orthogonale si, et seulement si, s∗ = s.
2. Montrer qu’une symétrie est une isométrie vectorielle si, et seulement si, c’est une symétrie ortho-

gonale.
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Trois schémas de symétries orthogonales – isométries

x

s(x)

F

F ⊥ x
s(x)

F

F ⊥

x

s(x)

F ⊥

F

Deux symétries non orthogonales – pas des isométries

F2

F1

s(x)

x
x

F2

F1

s(x)

Exercice 12 : Nous reprenons les schémas en page 13 pour voir, dans chaque cas de symétrie orthogonale,
si s est une isométrie positive ou négative, en mettant en parallèle le calcul de det(s).
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7 Annexe : quelques éléments de démonstrations
Propriété 1
• ⟨Ci, Cj⟩ =

n∑
k=1

ak,iak,j = [A⊤ A]i,j .

Donc A est une matrice orthogonale si et seulement si ⟨Ci, Cj⟩ = δi,j si et seulement si (C1, . . . , Cn) est une famille ortho-
normée.
Par ailleurs, une famille orthonormée est libre. Donc une famille orthonormée à dimE vecteurs est une base de E.
Donc A est une matrice orthogonale si et seulement si (C1, . . . , Cn) est une base orthonormée de Mn,1(R).
Même type de raisonnement avec les lignes (on peut aussi raisonner sur la transposée de A).

• On a vu en classe l’implication « A est la matrice de passage entre deux bases orthonormées » ⇒ A⊤ A = I.
Réciproquement, si A⊤ A = I, le premier point montre que la famille des colonnes de A est une base orthonormée C de
Mn,1(R) = Rn muni du produit scalaire canonique. A est la matrice de passage entre la base canonique, orthonormée, et la
base C.

Définition-propriété 2
• On(R) ⊂ GLn(R).
In ∈ On(R)
Soient A et B dans On(R). On montre que AB−1 ∈ On(R).

(AB−1)⊤
AB−1 = (AB⊤ )⊤

AB⊤ = BA⊤ AB⊤

= BB⊤ = In

• On complète ce qui précède avec det(In) = 1 et det((AB−1)⊤ ) = det(AB−1) = det(A) 1
det B

= 1
1 = 1.

• Le produit de deux matrices de déterminant −1 est de déterminant 1.

Théorème 1 (théorème de représentation de Riesz)
Démonstration 1
Comme E est un espace euclidien, il possède une base orthonormée (e1, . . . , en). Soit a ∈ E. La forme linéaire x 7→ ⟨x, a⟩ est
égale à φ si, et seulement si, elle coïncide avec φ sur une base de E, soit :

∀i ∈ J1, nK, φ(ei) = ⟨ei, a⟩

Or par l’écriture d’un vecteur dans une base orthonormée, a =
n∑

i=1
⟨ei, a⟩ei.

Donc le vecteur a est solution du problème si et seulement si a =
n∑

i=1
φ(ei)ei.

Démonstration 2
Montrons que l’application f :

(
E → L (E,R)
a 7→ (x 7→ ⟨x, a⟩)

)
est un isomorphisme.

— f est linéaire.
— dimE = dim L (E,R)
— f est injective : soit a ∈ ker f . On a a ∈ E⊥ = {0}.

Donc f est bijective.

Définition-propriété 3
• Existence et unicité
Soit y ∈ E. L’application x 7→ ⟨u(x), y⟩ est une forme linéaire. D’après le théorème de représentation, il existe un unique
vecteur dépendant de y donc qu’on peut noter a(y) tel que :

∀x ∈ E, ⟨u(x), y⟩ = ⟨a(y), x⟩

On pose alors u∗(y) = a(y). Pour tous x, y ∈ E, ⟨u(x), y⟩ = ⟨u∗(y), x⟩.

• Linéarité
Il ne reste qu’à vérifier la linéarité de u∗. Soient y, z ∈ E et λ ∈ R.
On va vérifier que u∗(λy + z) − (λu∗(y) + u∗(z)) est dans E⊥ = {0}. Par bilinéarité du produit scalaire, pour x ∈ E,

⟨u∗(λy + z)|x⟩ = ⟨λy + z|u(x)⟩
= λ⟨y|u(x)⟩ + ⟨z|u(x)⟩ = λ⟨u∗(y)|x⟩ + ⟨u∗(z)|x⟩
= ⟨λu∗(y) + u∗(z)|x⟩
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u∗(λy + z) − (λu∗(y) + u∗(z)) est orthogonal à tout vecteur, donc est nul.

Propriété 2

Linéarité : A été vue au cours de la définition-propriété 3.
Involution : Pour montrer que (u∗)∗ = u, on montre que u satisfait, à la place de g, à la relation :

⟨u∗(x), y⟩ = ⟨x, g(y)⟩

Ici, ⟨x, g(y)⟩ = ⟨x, u(y)⟩ = ⟨u(y), x⟩ = ⟨y, u∗(x)⟩.
Dit autrement, puisque ⟨u∗(x), y⟩ = ⟨x, u(y)⟩, l’adjoint de u∗ est bien u par unicité de l’adjoint.

Composition : Facile.
⟨u ◦ w(x), y⟩ = ⟨w(x), u∗(y)⟩ = ⟨x,w∗(u∗(y))⟩

Inversibilité : On part de u ◦ u−1 = Id. On a donc (u ◦ u−1)∗ = Id∗ = Id. Par la propriété de composition,
(u−1)∗ ◦ u∗ = Id. Comme E est de dimension finie, l’inversibilité à gauche équivaut à l’inversibilité à droite, donc u∗

est bijective, et on a trouvé son inverse.

Propriété 3
On a vu en introduction, puisque B est orthonormée, que les coefficients de la matrice de u∗ dans B étaient

mi,j = ⟨u∗(ej)|ei⟩ = ⟨ej |u(ei)⟩ = ⟨u(ei)|ej⟩ = [matB(u)]j,i

Propriété 4
Soit F stable par u et soit x ∈ F⊥. Soit y ∈ F .
⟨u∗(x), y⟩ = ⟨x, u(y)⟩ = 0

Propriété 5
On commence par montrer le lemme :

Lemme 3

Soit (e1, . . . , en) une base orthonormée de E.

u∗ = u ⇔ ∀i, j ∈ J1, nK, ⟨u(ei), ej⟩ = ⟨ei⟩u(ej)⟩

Puis on prend u ∈ L (E) et soit B une base orthonormée de E. Soit M = matB(u). On a vu en introduction du
chapitre :

mi,j = ⟨u(ej), ei⟩

Par le lemme, u ∈ S(E) ⇔ ∀i, j, mi,j = mj,i ⇔ M ∈ Sn(R).

Propriété 6
• Id ∈ S(E) et S(E) ⊂ L (E).
Soient λ ∈ R, u, v ∈ S(E). On a vu que u 7→ u∗ est linéaire.
Donc (λu+ v)∗ = λu∗ + v∗ = λu+ v.
S(E) est un sous-espace vectoriel de L (E).
Remarque : (u ◦ v)∗ = v∗ ◦ u∗ = v ◦ u n’est égal à u ◦ v que si u et v commutent.

• Soit B une base orthonormée de E. L’application f :
(

S(E) → Sn(R)
u 7→ matB(u)

)
est un isomorphisme.

Donc dim S(E) = dim Sn(R) = n(n+1)
2 .

Propriété 8
Soient Eα et Eβ deux espaces propres de u ∈ S(E) avec α ̸= β. Soient x ∈ Eα et y ∈ Eβ . On a u(x) = αx et u(y) = βy.
⟨u(x), y⟩ = ⟨x, u(y)⟩ donc α⟨x, y⟩ = β⟨x, y⟩. Puis ⟨x, y⟩ = 0.

Théorème 2
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Lemme 4
Tout endomorphisme d’un espace vectoriel de dimension finie admet une droite ou un plan stable.

Démonstration du lemme 4
Soit u un endomorphisme de E et πu son polynôme minimal.
Premier cas : si πu admet une racine dans R, alors u admet une valeur propre, et un vecteur propre associé e. Vect(e) est
une droite stable par u.

Deuxième cas : πu n’admet aucune racine dans R. On peut l’écrire πu = P1 × · · · × Pr produit de polynômes de de-
gré 2 sans racines réelles.

0 = πu(u) = P1(u) ◦ · · · ◦ Pr(u)

Par définition du polynôme minimal, P1(u) n’est pas bijectif et n’est pas injectif. Notons P1 = X2 + aX + b. Il existe e ̸= 0
tel que P1(u)(x) = 0. On a u2(e) ∈ Vect(e, u(e)), ce qui permet d’avoir Vect(e, u(e)) stable par u.
Remarque : il s’agit d’un plan, puisque e ̸= 0 et qu’on a supposé que u n’avait pas de valeur propre.

Lemme 5
Tout endomorphisme autoadjoint d’un espace euclidien non nul admet au moins une valeur propre.

Démonstration : soit u ∈ S(E) avec dimE ⩾ 1.
Si dimE = 1 : il existe e ̸= 0 dans E. E = Vect(e) et u(e) est de la forme αe.

Si dimE = 2 : la matrice de u dans une base orthonormale de E est symétrique, de la forme
(
a b
b c

)
. Son polynôme

caractéristique est χu = X2 − (a+ c)X + (ac− b2) de discriminant (a+ c)2 − 4(ac− b2) = (a− c)2 + 4b2 ⩾ 0.
L’endomorphisme u admet donc au moins une valeur propre réelle.
Si dimE > 2 : l’endomorphisme u admet au moins une droite ou un plan stable (lemme 4). L’endomorphisme induit sur
cette droite ou ce plan est encore autoadjoint et possède (par les deux premiers cas qu’on vient de traiter) une valeur propre.

• Montrons maintenant (1) ⇒ (2) : tout endomorphisme autoadjoint de E est diagonalisable dans une base orthonor-
male. On procède par récurrence sur la dimension de E.
Pn : « pour tout endomorphisme autoadjoint u d’un espace E de dimension n, il existe une base orthonormale de E consti-
tuée de vecteurs propres de u. »

— Soit E de dimension 1. La matrice de u ∈ L (E) dans cette base est diagonale. P1 est vraie.
— Soit n ∈ N∗ tel que Pn est vraie. Soit u un endomorphisme autoadjoint en dimension n + 1. Par le lemme, u admet

une valeur propre réelle, et un vecteur propre associé x0.
F = Vect(x0) est stable par u. Par propriété, F⊥ est stable par u autoadjoint.
uF et uF ⊥ sont encore autoadjoints (à vérifier rapidement). Par P1 et Pn, il existe B1 base orthonormée de F et B2
base orthonormée de F⊥ constituées de vecteurs propres de u.
Comme F

⊥
⊕ F⊥ = E, la concaténation B de B1 et B2 est une base orthonormée de E.

Pn+1 est vraie, ce qui achève la récurrence.

• (1) ⇒ (3). On poursuit le raisonnement précédent pour u un endomorphisme autoadjoint en dimension n. Puisque u est
diagonalisable, E est somme directe des espaces propres de u. Et on a vu à la propriété 8 que les espaces propres étaient
deux à deux orthogonaux.

• (3) ⇒ (2). Si E est somme directe orthogonale d’espaces propres de u, alors une base orthonormale adaptée à cette
somme directe est une base orthonormale de E constituée de vecteurs propres de u.

• (2) ⇒ (1). Il existe une base orthonormée de E dans laquelle la matrice de u est diagonale, donc symétrique. Par
propriété, u est autoadjoint.

Caractérisation spectrale – propriété 9

Soit B = (e1, . . . , en) une base orthonormée de vecteurs propres de u (par le théorème spectral), et (λ1, . . . , λn) les va-
leurs propres associées.
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Soit x =
n∑

i=1
xiei. On a

u(x) =
n∑

i=1

λixiei ⟨u(x), x⟩ =
n∑

i=1

λix
2
i

• Supposons que u ∈ S+(E).
En prenant x = ej dans ce qui précède, on trouve λj = ⟨u(ej), ej) ⩾ 0.
Et si u ∈ S++(E), puisque ej ̸= 0, on trouve λj > 0.

• Réciproquement, supposons que Sp(u) ⊂ R+.
Comme somme de positifs, ⟨u(x), x⟩ ⩾ 0 et il a égalité si et seulement si, ∀i, λix

2
i = 0.

Si Sp(u) ⊂ R+∗, on a donc bien aussi : ⟨u(x), x⟩ = 0 ⇒ x = 0.

Définition-propriété 5
• (1) ⇒ (2)
On suppose que u conserve la norme. Par formule de polarisation :

⟨u(x), u(y)⟩ = 1
2
(
∥u(x) + u(y)∥2 − ∥u(x)∥2 − ∥u(y)∥2)

= 1
2
(
∥u(x+ y)∥2 − ∥u(x)∥2 − ∥u(y)∥2)

= 1
2(∥x+ y∥2 − ∥x∥2 − ∥y∥2)

= ⟨x, y⟩

• (2) ⇒ (1) (facultatif)
On suppose que u conserve le produit scalaire. Alors ∥u(x)∥2 = ⟨u(x), u(x)⟩ = ⟨x, x⟩ = ∥x∥2 et par positivité de la norme,
∥u(x)∥ = ∥x∥.

• (2) ⇒ (3)
Supposons que u conserve le produit scalaire. Soit (e1, . . . , en) une base orthonormée de E.
⟨u(ei), u(ej)⟩ = ⟨ei, ej⟩ = δi,j . Donc (u(e1), . . . , u(en)) est une famille orthonormée de E. On termine comme d’habitude
pour base.

• (3) ⇒ (1)
Supposons que u conserve les bases orthonormées de E.
Soit x ∈ E. Si x = 0, ∥u(x)∥ = ∥u(0)∥ = 0 = ∥0∥ = ∥x∥.
Si x ̸= 0, x

∥x∥ est de norme 1, et peut être complété en B base orthonormée de E.
Par hypothèse, u(B) est une base orthonormée, donc en particulier, u( x

∥x∥ ) est de norme 1.
Donc ∥ 1

∥x∥u(x)∥ = 1 puis ∥u(x)∥ = ∥x∥.

Propriété 10
• Montrons que O(E) ⊂ GL(E).
Soit u une isométrie vectorielle et x ∈ keru. On a ∥x∥ = ∥u(x)∥ = ∥0∥ = 0. Donc x = 0. u est donc injectif. S’agissant d’un
endomorphisme de E de dimension finie, u est bijectif.

• IdE conserve la norme, IdE ∈ O(E).
• Soient u et w dans O(E). Montrons que u ◦ w−1 ∈ O(E). Soit x ∈ E.

∥u(w−1(x))∥ =
u isométrie

∥w−1(x)∥ =
w isométrie

∥w(w−1(x))∥ = ∥x∥

Propriété 11
• On suppose que u est une isométrie. On a vu à la propriété 10 que u était bijectif. Pour x et y dans E,

⟨u(x), y⟩ = ⟨u(x), u ◦ u−1(y)⟩ = ⟨x, u−1(y)⟩

donc u∗ = u−1.

• On suppose que u est bijectif et que u∗ = u−1.
∥u(x)∥2 = ⟨u(x), u(x)⟩ = ⟨x, u∗(u(x))⟩ = ⟨x, x⟩

Propriété 12
On note M la matrice de u dans une base orthonormée.
Par la propriété précédente, u est une isométrie si, et seulement si, u◦u∗ = Id si, et seulement si, MM⊤ = In si, et seulement
si, M est une matrice orthogonale.
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Propriété 13

Soit M =
(
a b
c d

)
une matrice orthogonale. On a les équations


a2 + c2 = 1
b2 + d2 = 1
ab+ cd = 0 (∗)
ad− bc = ±1

. On procède par astuce avec (∗), en

essayant de fournir une colinéarité sur un vecteur non nul :

Par (*),
∣∣∣∣a −d
c b

∣∣∣∣ = 0, avec (a, c) ̸= 0 puisque sa norme est 1

Il existe un réel α tel que
(

−d
b

)
︸ ︷︷ ︸

de norme 1

= α

(
a
c

)
︸︷︷︸

de norme 1

. Donc α ∈ {−1, 1}.

Premier cas : α = 1. M =
(
a c
c −a

)
et det(M) = −(a2 + c2) = −1.

La relation a2 + c2 = 1 fournit a2 ⩽ 1, puis −1 ⩽ a ⩽ 1, et l’existence de θ réel tel que a = cos θ. On en déduit que
c = ± sin θ. Mais quitte à changer θ en −θ, il existe θ réel tel que c = sin θ.

M est de la forme
(

cos θ sin θ
sin θ − cos θ

)
= S(θ).

Deuxième cas : α = −1. M =
(
a −c
c a

)
et det(M) = a2 + c2 = 1. Par les mêmes calculs/raisonnements qu’au pre-

mier cas, ∃θ ∈ R, a = cos θ et c = sin θ. M est de la forme R(θ).

Propriété 14
Ce sont les formules trigonométriques et le calcul matriciel R(θ)R(θ′) qui donnent la matrice R(θ + θ′). Soit

ψ :

 (U,×) −→ (SO2(R),×)

z = eiθ 7→
(

Re(z) − Im(z)
Im(z) Re(z)

)
=
(

cos θ − sin θ
sin θ cos θ

) 
• ψ est bien définie.
• ψ est un morphisme de groupes :

ψ(zz′) = ψ(ei(θ+θ′)) = R(θ + θ′) = R(θ)R(θ′) = ψ(z)ψ(z′)

• ψ est surjective par la propriété précédente (prop. 14).

• ψ(z) = I2 ⇔
{

cos θ = 1
sin θ = 0

⇔ θ ∈ 2πZ ⇔ z = 1. Donc ψ est injective.

Propriété 15
• Soit u une isométrie positive.
Soit B0 une base orthonormée directe de E. La matrice de u dans cette base est orthogonale positive, donc il existe θ (unique
modulo 2π) tel que matB0 (u) = R(θ). Soit B une base orthonormée directe de E, et P la matrice de passage de B à B0. En
tant que matrice de passage entre deux bases orthonormées, P est une matrice orthogonale. Comme on passe d’une base
directe à une base directe, det(P ) = 1, et P ∈ SO2(R).
Par formule de changement de bases, matB(u) = P ×R(θ) × P−1.
On a vu dans la propriété précédente (propriété 14) que S02(R) était un groupe commutatif. Donc ces trois matrices com-
mutent, donc matB(u) = R(θ).
Remarque : dans une base orthonormée indirecte, on peut montrer que mat(u) = R(−θ).

• Soit u une isométrie négative. Par la propriété 13, il existe une base orthonormale de E dans laquelle mat(u) = S(θ).
Comme [S(θ)]2 = I2, on a χu = X2 − 1 = (X − 1)(X + 1) et χu est scindé à racines simples, donc u est diagonalisable, de
spectre {−1, 1}.
Pour x ∈ E1 et y ∈ E−1, on a

⟨x, y⟩ = ⟨u(x),−u(y)⟩ = −⟨x, y⟩ puis ⟨x, y⟩ = 0
Les espaces propres sont donc orthogonaux, et on peut considérer une base orthonormée (x0, y0) de E1 ⊕ E−1 = E ; dans

cette base orthonormée, la matrice de u est
(

1 0
0 −1

)
. Et u est la symétrie orthogonale par rapport à Vect(x0). C’est une

réflexion car dim Vect(x0) = dimE − 1.

Lemme 1
Soit u ∈ O(E), et λ ∈ Sp(u). Il existe x ̸= 0 tel que u(x) = λx. Comme u conserve la norme, ∥λx∥ = ∥x∥, puis |λ|∥x∥ = ∥x∥.
Comme x ̸= 0, ∥x∥ ̸= 0, et |λ| = 1.
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u est un endomorphisme d’un R-espace vectoriel... λ ∈ {−1, 1}.

Lemme 2
Soit F stable par l’isométrie vectorielle u. On a u(F ) ⊂ F .
Avoir l’œil ! u(F ) et F sont de même dimension car u est bijectif. Donc u(F ) = F . Cela va servir !
Soit x ∈ F⊥. Soit y ∈ F . Par ce qui précède, il existe t ∈ F tel que y = u(t).
⟨u(x), y⟩ = ⟨u(x), u(t)⟩ = ⟨x, t⟩ = 0.
F⊥ est aussi stable par u.

Théorème 3
Soit Pn : « pour toute isométrie d’un espace euclidien E de dimension n, il existe une base orthonormée de E dans laquelle
la matrice de u est diagonale par blocs avec des blocs diagonaux de la forme (1), (−1), R(θ) avec θ ̸∈ {0, π} ».
On montre cette propriété par récurrence forte pour n ⩾ 1.
• P1 est vraie. Tout vecteur non nul est vecteur propre, et par le lemme 1, les valeurs propres possibles sont 1 et −1.
P2 est vraie (cf. réduction des isométries en dimension 2).
• Soit n ⩾ 2 tel que P2, . . . ,Pn sont vraies, et soit u isométrie d’un espace euclidien E de dimension n+ 1.
Par le lemme 4, il existe une droite ou un plan stable par u.

— S’il existe une droite D = Vect(e) stable par u, alors d’une part, e est vecteur propre de u associé, par le lemme 1, à la
valeur propre 1 ou −1. D’autre part, par le lemme 2, D⊥ est stable par u. uD⊥ est encore une isométrie (la propriété
de conservation de la norme reste vraie par restriction), en dimension n. Par hypothèse de récurrence, il existe une
base orthonormée B de D⊥ dans laquelle la matrice de uD⊥ est diagonale par blocs avec des blocs comme annoncé.
Soit B′ la concaténation de (e) et B. C’est une base orthonormée de E dans laquelle la matrice de u est de la forme
voulue.

— Sinon, il existe P plan stable par u.
uP est une isométrie en dimension 2, et il existe une base orthonormée B1 dans laquelle mat(uP ) est de la forme R(θ)

ou
(

1 0
0 −1

)
.

(Remarque : c’est forcément R(θ) puisqu’on s’est ici placé dans le cas où u n’admettait pas de droite stable.)
Et par le lemme 2, P⊥ est stable par u. uP ⊥ est encore une isométrie, en dimension n−1. Par hypothèse de récurrence,
il existe une base orthonormée B2 de P⊥ dans laquelle la matrice de uP ⊥ est diagonale par blocs avec des blocs comme
annoncé.
Soit B′ la concaténation de B1 et B2. C’est une base orthonormée de E dans laquelle la matrice de u est de la forme
voulue.
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Pour moi : classification des isométries en dimension 3, en fonction des éléments propres

isométrie déterminant spectre matrice dans une certaine base orthonormée

identité (rotation d’angle 0) 1 {1} I2

rotation d’angle π (demi-tour) 1 {1,−1}

(1 0 0
0 −1 0
0 0 −1

)

rotation d’angle θ ̸∈ {0, π} 1 {1}

(1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)

− Id −1 {−1} −I2

réflexion −1 {1,−1}

(−1 0 0
0 1 0
0 0 1

)

composée rotation-réflexion −1 {−1}

(−1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)
=

(−1 0 0
0 1 0
0 0 1

)(1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)

Propriété 16
Soit p un projecteur de E espace vectoriel euclidien.

• Supposons que p soit un projecteur orthogonal. Soit (x, y) ∈ E2.

⟨p(x)|y⟩ = ⟨p(x)|p(y) + y − p(y)⟩
= ⟨p(x)|p(y)⟩ + ⟨p(x)|y − p(y)⟩
= ⟨p(x)|p(y)⟩ + 0 car p(x) ∈ F et y − p(y) ∈ F⊥

= ⟨p(x)|p(y)⟩

Par symétrie des rôles de x et y, on a aussi : ⟨p(y)|x⟩ = ⟨p(y)|p(x)⟩ = ⟨p(x)|p(y)⟩.
Et par symétrie du produit scalaire : ⟨x|p(y)⟩ = ⟨p(x)|p(y)⟩, et finalement, ⟨p(x)|y⟩ = ⟨x|p(y)⟩.

• Supposons que p∗ = p (on dit que p est autoadjoint).
p est un projecteur ; c’est la projection sur Im p parallèlement à ker p. On voudrait donc montrer que
ker p = (Im p)⊥.
Soient x ∈ ker p et y ∈ Im p. Il existe t ∈ E tel que y = p(t). On a :

⟨x|y⟩ = ⟨x|p(t)⟩
= ⟨p(x)|t⟩ car p∗ = p

= ⟨0|t⟩ = 0

Ainsi ker p ⊂ (Im p)⊥. Par le théorème du rang et propriété de l’orthogonal, nous avons :

dim ker p = dimE − dim Im p = dim (Im p)⊥

et finalement, ker p = (Im p)⊥. p est la projection sur Im p parallèlement à (Im p)⊥.
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