Endomorphismes d’un espace euclidien

Les attentes

1. Matrices orthogonales : définition par AT A = I,,, caractérisation
par le caracteére orthonormal de la famille des colonnes, des lignes.
Interprétation comme matrice de changement de base orthonormée.

2. Savoir définir 'adjoint d’un endomorphisme. Propriétés (linéarité,
adjoint d’un inverse, adjoint d’une composée, involutivité).

3. Matrice de ’adjoint dans une base orthonormée.
4. Si F est stable par u, alors ...

5. Etude des endomorphismes autoadjoints (u* = u). Théoréme spec-
o tral.

@ 6. Cas particulier des projecteurs orthogonaux.
7. Endomorphisme autoadjoint positif, défini positif. Caractérisation
spectrale. Notations ST (E), ST (E).

8. Matrice symétrique positive, définie positive. Caractérisation spec-
trale.

9. Etude des isométries : définition par la conservation des normes.
Propriétés : u* = v ™!, conservation du produit scalaire, conservation
des bases orthonormées.

10. Groupe orthogonal et groupe spécial orthogonal.

11. Théoréeme de réduction des isométries dans une base orthonormée.

1. Théoreme de représentation des formes linéaires dans un espace eu-
2 clidien.

2. Description des matrices orthogonales directes et indirectes de taille
2. Classification des isométries d’'un plan euclidien.

3. Isomorphisme de U sur SO2(R). Le groupe SO2(R) est commutatif.

Dans tout le chapitre E désigne un espace euclidien, muni du produit scalaire (.,.), et u € Z(E).
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1 Matrice d’un endomorphisme dans une base orthonormée

Pour tout vecteur de E, on a la décomposition dans une base orthonormée (e, ..., ey,) :

n

xr = Z(x,ei)ei

i=1

Donc les coordonnées de u(e;) relativement aux e; valent (u(e;), €;).

u(er) u(ez)
(u(er),e1)  (u(e2),e1) :
(u(er),e2) : (u(e2),e2) :

mat(el,...,en) (u) = :

Calculons M " M :

2 Matrices orthogonales

2.1 caractérisation des matrices orthogonales

u(en)
(u(en), e1)\ e1
(u(en), e2) |e2

—[ Définition 1 }

Une matrice A € M,(R) est orthogonale si AT A =1, = AAT .

Autrement dit, A est une matrice orthogonale si A est inversible, d’inverse égal a sa transposée. Comme
d’habitude, il suffit d’avoir AT A =1I,, ou AAT =1, pour avoir AT A =1, = AAT .

I, est une matrice orthogonale.
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Soit une matrice de passage P = Pg' entre deux bases orthonormées B et B’ de FE.

P=P§ =

P'=p5 =

{PTP:In:PPT}

,_‘ Propriété 1 !

Soit A € M, (R). Les assertions suivantes sont équivalentes :

1. A est une matrice orthogonale
2. la famille (C1,...,C)) des colonnes de A est une base orthonormée de M,, 1(R)
3. la famille (Lq,..., Ly) des lignes de A est une base orthonormée de M ,(R)

4. A est la matrice de passage entre deux bases orthonormées.

. J

,_[ Définition - propriété 1 ]
Deux matrices A, B € M,,(R) sont orthogonalement semblables sl existe une matrice orthogonale
P telle que

B=P AP =P AP

A et B représentent alors le méme endomorphisme dans deux bases orthonormales.

N\ Exercice 1 : Soit A une matrice orthogonale. Montrer que Sp(A) C {—1,1}. On donnera deux
réponses :

— T'une avec la connaissance des isométries,

— TDautre par le calcul de ||AX||%.

2.2 groupe orthogonal

Si A est une matrice orthogonale, det(AT A) = det([,,), donc (det(A))? = det(AT )det(A) = 1 et donc
det(A) = £1. Ceci nous ameéne & distinguer deux types de matrices orthogonales.
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,_[ Définition - propriété 2 }

o L’ensemble des matrices orthogonales de M., (R) est un sous-groupe de GL,,(R), appelé groupe
orthogonal et noté O, (R) ou O(n).

e Une matrice orthogonale A est dite positive, ou directe, si det A = 1.

L’ensemble des matrices orthogonales positives est un sous-groupe de GL,(R), appelé groupe
spécial orthogonal et noté SO, (R) ou SO(n).

e Une matrice orthogonale A est dite négative, ou indirecte, si det A = —1.
L’ensemble des matrices orthogonales négatives n’est pas un groupe.

N Exercice 2 : Montrer que O, (R) et SO, (R) sont des compacts.

2.3 orientation d’un espace vectoriel normé de dimension finie

Soient B et B’ deux bases orthonormales de E et P la matrice de passage de B & B’. On a vu que P était
une matrice orthogonale, donc son déterminant est égal a 1 ou a —1.

On dit que B et B’ définissent la méme orientation si det(P) = 1.

Orienter [’espace consiste a choisir arbitrairement une base orthonormale de E. Toutes les bases qui
définissent la méme orientation sont dites directes. Les autres sont dites indirectes.

Orienter I'espace revient donc a choisir une des deux classes d’équivalence associées a la relation d’équi-
valence définie par « BR B’ si et seulement si det(P§ ) = 1 ».

— Par convention, les bases orthonormales directes de R3 sont celles
qui respectent la régle de la main droite.

— En pratique, dans R™, on choisit toujours la base canonique comme
base directe de référence.

— Pour E espace euclidien orienté et B et B’ bases orthonormées di-
rectes de F, on a detp = detp:. Cela vient de la formule de change-
ment de base pour les déterminants :

RISCHE NATIONALBANK
CAJAZIUNALA SVIZRA

.
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3 Adjoint d’un endomorphisme

,_[ Théoreme 1 — représentation des formes linéaires ]

Pour toute forme linéaire ¢, il existe un unique vecteur a € E tel que :

Ve € E, p(x) = (a,x)

,_[ Définition - propriété 3 }

Soit u € Z(F). Il existe un unique endomorphisme u* de E vérifiant :

Ve,y € B, (u(@),y) = (2,4 (y))

Cet endomorphisme u* s’appelle l'adjoint de wu.

Par exemple, Id* = et 0* =

,_[ Propriété 2 — propriétés de u — u* }

Linéarité : D’application u — u* est linéaire.
Involution : Dapplication u — u* est involutive, c’est-a-dire que (u*)* = w.
Composition : (uow)* = w* ou*.

Inversibilité : si u est bijective, u* I'est aussi et (u*)~! = (u=1)*.

Exercice 3 : Soit u un endomorphisme d’un espace euclidien E. Montrer que keru* = (Im u)L et que
Im u* = (keru)™.

,_' Propriété 3 !

Soit u € Z(E) et B une base orthonormale de E. On a matg(u*) = matg(u) "

Il s’ensuit que les endomorphismes u et ©v* ont méme rang, méme déterminant, méme trace et méme
polynéme caractéristique.

,_' Propriété 4 !

Si F est un sous-espace vectoriel de E stable par u, alors F- est stable par u*.
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4 Endomorphismes autoadjoints et matrices symétriques réelles

4.1 généralités

—[ Définition 2 }

On dit quun endomorphisme u € Z(FE) est autoadjoint si u* = u, c’est-a-dire si :

V(w,y) € E?, (u(z),y) = (z,u(y))

On note S(FE) 'ensemble des endomorphismes autoadjoints.

Par exemple, Id et plus généralement aoId (a € R), sont autoadjoints.

,_‘ Propriété 5 !

Soit u € Z(F) et soit B une base orthonormée de E.

u € S(F) & matg(u) € S, (R)

Un endomorphisme autoadjoint est parfois appelé endomorphisme symétrique, en vertu de la propriété
précédente, et cela explique la notation S(E).

,_‘ Propriété 6 !

S(E) est un sous-espace vectoriel de Z(E), et dimS(F) =

n(n+1)
—

4.2 réduction des endomorphismes autoadjoints

Rappelons que si F est stable par u, alors F+ est stable par u*. Dans le cas d’un endomorphisme
autoadjoint, nous avons donc :

,_‘ Propriété 7 l \

Soit u € S(F). Si un sous-espace vectoriel F' de E est stable par u, alors F- est aussi stable par .

,_‘ Propriété 8 ! |

Les sous-espaces propres d’'un endomorphisme autoadjoint sont deux a deux orthogonaux.

,_[ Théoréme 2 — Théoreme spectral }

Si u est un endomorphisme autoadjoint de F, alors u est diagonalisable dans une base orthonormale.
Plus précisément, pour u € Z(FE), les trois assertions suivantes sont équivalentes :

1. u est autoadjoint.

2. Il existe une base orthonormée de E constituée de vecteurs propres de wu.

1
3. E= € Ei(w)

AESP(u)
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—[ Corollaire 1 ]

Toute matrice symétrique réelle A est orthogonalement diagonalisable : il existe une matrice
orthogonale P et une matrice diagonale D telles que

A=PDP"

Exercice 4 : Le résultat précédent ne s’étend pas dans C. Montrer en effet que la matrice symétrique

A= (? 5) n’est pas diagonalisable.

Exercice 5 : Montrer que pour M € M, (R), M M est diagonalisable.

1 11
Exercice 6 : Diagonaliser orthogonalement J =11 1 1
1 11

Exercice 7 : Soit u un endomorphisme autoadjoint d'un espace euclidien F, et f : z — (u(z),z). En
utilisant le théoréme spectral, montrer que le minimum de f sur S = {x € E, ||z| = 1} est égal a la plus
petite valeur propre de u, et que le maximum de f sur S est égal a la plus grande valeur propre de u.

4.3 endomorphismes autoadjoints positifs, définis positifs

— Définition 3
Soit u € S(E).
o On dit que u est autoadjoint positif si: Va € E, (u(zx),z) > 0.

e On dit que u est autoadjoint défini positif si :

Ve e E, (u(z),z) 20 et ((u(z),z)=0= z=0)

On note ST(FE) 'ensemble des endomorphismes autoadjoints positifs de £ et ST (E) I'ensemble des
endomorphismes autoadjoints définis positifs de F.

,_[ Propriété 9 — Caractérisation spectrale }

Soit u un endomorphisme autoadjoint.

ueST(E) & Sp(u) cRT
uweSTH(E) < Sp(u) c R

MP 2025 — 2026 7 D. Leroy, lycée Pissarro



,_[ Définition - propriété 4 — Caractérisation spectrale }

Soit A € S, (R). On dit que A est une matrice :

o symétrique positive, et on note A € S;F(R), si :

VX € Mp,1(R), XT AX = (AX,X) >0 ouencore Sp(4) CRT
o symétrique définie positive, et on note A € ST (R), si :

¥X € Mn1(R) XTAX = (AX, X) >0
{ M ’1( ) < > ou encore SP(A) - R+*

XTAX=0= X=0

Par calcul matriciel, nous obtenons des formes quadratiques (hors-programme) :

XTAX =

et si D est une matrice diagonale,

X'"DX =

N

N Exercice 8 : Soit M une matrice symétrique réelle d’ordre n. Montrer que (1) < (2), ou :
1. M e S} (R)

2. il existe une matrice R symétrique réelle telle que M = R?.

5 Isométries vectorielles d’un espace euclidien

5.1 généralités sur les isométries

Dans d’anciens sujets de concours, vous pouvez rencontrer la terminologie automorphisme orthogonal a
la place de isométrie vectorielle.

,_[ Définition - propriété 5 }

Soit © un endomorphisme de E. Les assertions suivantes sont équivalentes :

1. w conserve la norme : Vo € E, |ju(z)| = ||z|.
2. u conserve le produit scalaire : Va,y € E, (u(z),u(y)) = (z,y).

3. u conserve les bases orthonormées : pour (ej,...,e,) base orthonormée de F,
(u(ey),...,u(e,)) est une base orthonormée de E.

On dit alors que u est une isométrie vectorielle de E.

Par exemple,
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Propriété 10 ]

L’ensemble des isométries vectorielles de F est un sous-groupe de GL(E), appelé groupe orthogonal
de E et noté O(E).

,_[ Propriété 11 ] .

Soit u un endomorphisme de E.

. Lo . U est bijectif
u est une isométrie vectorielle < ¢ |
u

:’u*

,_[ Propriété 12 }

Soit u un endomorphisme de E.

u est une isométrie < la matrice de u dans toute base orthonormale est orthogonale
< il existe une base orthonormale dans laquelle la matrice de u

est orthogonale

\.

Il s’ensuit que le déterminant d’une isométrie vaut 1 ou —1.

,_[ Définition - propriété 6 ]

e Une isométrie u est dite positive, ou directe, si son déterminant vaut 1.
L’ensemble des isométries positives est un sous-groupe de GL(FE), appelé groupe spécial or-
thogonal et noté SO(E).

e Une isométrie u est dite négative, ou indirecte, si son déterminant vaut —1. L’ensemble des
isométries négatives n’est pas un groupe.

Remarques :

— Pour B base orthonormée de F, on a les équivalences suivantes :

< matg(u) € SO, (R)

u € SO(E) {u € O(E) o {matg(u) € 0,(R)

detu=1 det matp(u) =1
— Par formule sur les déterminants,
detg(u(B')) = det(u) x detg(B’)

donc u transforme une base orthonormale directe de F en base orthonormale directe si, et seulement

si, u € SO(E).
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5.2 isométries vectorielles en dimension 2
,_[ Propriété 13 }

O2(R) est ’ensemble des matrices de la forme R(0) = (Z?ﬁg _22 g) et S(0) = (Z?ﬁg _ :)I; Z)

avec 0 € R.
Plus précisément,

M e SO2(R) &  J0eR, M =R(0)
M e O2(R)\SO2(R) <  F0eR, M=S5(9)

,_[ Propriété 14 }
Pour 0,60 réels, R(O)R(0') = R(0 + 0'). Le groupe SO2(R) est commutatif et isomorphe a U.

. J

,_[ Propriété 15 }

Ici E est un espace euclidien orienté de dimension 2. Soit u € O(E).

o Siu € SO(E), il existe § € R, unique modulo 27, tel que pour toute base orthonormée directe
B, on ait matp(u) = R(#). On dit que u est une rotation d’angle 6.

e Siue€ O(E)\SO(FE), alors il existe une base orthonormée dans laquelle mat(u) = (é _01>,

et u est une réflexion.

5.3 réduction des isométries
5.3.1 cas général

Enoncons deux lemmes nécessaires a la démonstration du « gros » théoreme de réduction :

—' Lemme 1 }

Pour u € O(F), Sp(u) C {—1,1}.

—' Lemme 2 l

Si F' est stable par Iisométrie vectorielle u, alors F- est aussi stable par u.

—[ Théoréme 3 } <

Soit une isométrie vectorielle u € O(E). Il existe une base orthonormée de E dans laquelle la

matrice de u est diagonale par blocs, les blocs diagonaux étant de la forme (1), (—1) et R(0) avec
0 € R\ nZ.
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Autrement dit, il existe une base orthonormée de E dans laquelle la matrice de u est de la forme :

R(61) avec (01,...,0,) € (R\ 7Z)"

R(6r)

—[ Corollaire 2 ]

Soit A € O, (R). Alors il existe une matrice P € O, (R) et une matrice D diagonale par blocs, les
blocs diagonaux étant de la forme (1), (—1) et R(6) avec § € R\ 7Z, telles que A= PDP".

5.3.2 réduction des isométries positives en dimension 3

Dans ce paragraphe, E est un espace euclidien orienté de dimension 3. Par le théoréeme de réduction,
quand on enleve les redondances, la matrice de u isométrie de E est, dans une certaine base orthonormée,

+1 0
de la forme (0 R(G))’ 0 €R.

Soit u € SO(R3). 1l existe une base orthonormée de R? dans laquelle la matrice de u est de la

1 0 . . ,
forme (O R(G))’ # € R. On dit que u est une rotation d’angle 6.

Il existe une droite D et un plan P = D tel que up = Idp et up soit une rotation.

Conformément au programme, la pratique du calcul des éléments géométriques d’un élément de S03(R)
n’est pas un attendu du programme. Terminons tout de méme par un exemple.

0
0

0 1
Exercice 9 : Soit A = |1 0| et u I’endomorphisme de R?® canoniquement associé a A. Détermi-
0 0

1
ner les caractéristiques de u en complétant les questions suivantes.

e u est une isométrie car :

e 1 est une isométrie positive car :

o L’ensemble des invariants de u est D = Vect(n), ou n =
e Pour P = D', up est par propriété une rotation. Son angle @ vérifie :

e On prend by = (1,1,1), by = (1,—1,0). Proposer b3 tel que (b1, ba, bs) soit une base orthonormée
directe de R3. En travaillant dans le plan P = Vect(bs, b3), déterminer finalement 6.
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6 Projecteurs orthogonaux et symétries orthogonales

—[ Définition 4 }

On appelle projecteur orthogonal de E tout projecteur sur un sous-espace vectoriel F' et parallele-
ment & F.

On appelle symétrie orthogonale de E toute symétrie par rapport a un sous-espace vectoriel F'
parallelement & F=*.

On appelle réfiexion de E toute symétrie orthogonale par rapport a un hyperplan de E.

Exercice 10 : Soient H un hyperplan de F de vecteur normal 77 et s la réflexion par rapport & H. Donner
Pexpression de s(z) pour = € E.

,_[ Propriété 16 }

Soit p un projecteur de E et B une base orthonormée de E. Les assertions suivantes sont équi-
valentes :

1. p est un projecteur orthogonal.

2. kerp = (Imp)* (& retenir sur un schéma).
3. p est un endomorphisme autoadjoint.
4

. matg(p) est une matrice symétrique.

\. J

Exercice 11 :
1. Montrer qu’une symétrie de F est une symétrie orthogonale si, et seulement si, s* = s.

2. Montrer qu’une symétrie est une isométrie vectorielle si, et seulement si, c’est une symétrie ortho-
gonale.
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Trois schémas de symétries orthogonales — isométries

F F+
Ft x T
Pt F
= 2]
A :
s(x)

Deux symétries non orthogonales — pas des isométries

Fy

Fy

s(z)

Exercice 12 : Nous reprenons les schémas en page 13 pour voir, dans chaque cas de symétrie orthogonale,
si s est une isométrie positive ou négative, en mettant en parallele le calcul de det(s).
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7 Annexe : quelques éléments de démonstrations

Propriété 1

n
« (Ci,Ci) = 3 angany = [AT Al

k=1

Donc A est une matrice orthogonale si et seulement si (C;, C;) = d;,; si et seulement si (C1,...,Cy) est une famille ortho-
normée.
Par ailleurs, une famille orthonormée est libre. Donc une famille orthonormée a dim E vecteurs est une base de E.
Donc A est une matrice orthogonale si et seulement si (C1, ..., C,) est une base orthonormée de M, 1(R).
Méme type de raisonnement avec les lignes (on peut aussi raisonner sur la transposée de A).

o On a vu en classe Pimplication « A est la matrice de passage entre deux bases orthonormées » = AT A = I.
Réciproquement, si AT A = I, le premier point montre que la famille des colonnes de A est une base orthonormée C de
My, 1(R) = R™ muni du produit scalaire canonique. A est la matrice de passage entre la base canonique, orthonormée, et la
base C.

Définition-propriété 2

« Ou(R) C GL,(R).

I, € O, (R)

Soient A et B dans O, (R). On montre que AB™' € O, (R).

(AB"Y' ' AB™' = (AB") ABT =BAT AB"

BB =1,

e On compléte ce qui précéde avec det(l,) =1 et det((AB_l)T) =det(AB™") =det(A) 45 =1 = 1.

o Le produit de deux matrices de déterminant —1 est de déterminant 1.

Théoréme 1 (théoréme de représentation de Riesz)

DEMONSTRATION 1

Comme FE est un espace euclidien, il posséde une base orthonormée (e1, ..., e,). Soit a € E. La forme linéaire x — (z,a) est
égale a ¢ si, et seulement si, elle coincide avec ¢ sur une base de E, soit :

Vi e [1,n], ¢(e:) = (es, a)

n
Or par Iécriture d’un vecteur dans une base orthonormée, a = 3 (e;, a)e;.
i=1
n

Donc le vecteur a est solution du probleme si et seulement si a = Z w(ei)e;.
i=1

DEMONSTRATION 2

E — Y(E,R)

o« o (2 (z,0)) ) est un isomorphisme.

Montrons que 'application f : (

— [ est linéaire.

— dim F = dim Z(E,R)

— f est injective : soit a € ker f. On a a € E+ = {0}.
Donc f est bijective.
Définition-propriété 3
o Existence et unicité

Soit y € E. L’application z — (u(x),y) est une forme linéaire. D’aprés le théoréme de représentation, il existe un unique
vecteur dépendant de y donc qu’on peut noter a(y) tel que :

Vz € E, (u(z),y) = (a(y),z)
On pose alors u*(y) = a(y). Pour tous z,y € E, (u(x),y) = (u*(y), z).
o Linéarité

Il ne reste qu’a vérifier la linéarité de u*. Soient y,z € E et A € R.
On va vérifier que u*(A\y + z) — (A\u*(y) + u*(2)) est dans E+ = {0}. Par bilinéarité du produit scalaire, pour x € E,

(u”(\y + 2)|) Ay + z|u(@))
Mylu(@)) + (zlu(z)) = AMu" (y)]x) + (u"(2)]2)

= (M (y) +u(2)]e)
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uw* (Ay + z) — (Au™(y) + u*(2)) est orthogonal & tout vecteur, donc est nul.
Propriété 2

Linéarité : A été vue au cours de la définition-propriété 3.
Involution : Pour montrer que (u*)* = u, on montre que u satisfait, a la place de g, a la relation :
(u”(@),y) = (,9(y))
Iei, (z,9(y)) = (z,u(y)) = (u(y),z) = (y,u"(2)).
Dit autrement, puisque (u*(x),y) = (z,u(y)), 'adjoint de u™ est bien u par unicité de I'adjoint.
Composition : Facile.
(wow(z),y) = (w(z),u (y)) = (z,w"(u"(y)))

Inversibilité : On part de wou™" =1Id. On a donc (uou™"')* =Id* = Id. Par la propriété de composition,
(u™1)* ow* =1Id. Comme E est de dimension finie, 'inversibilité & gauche équivaut & l'inversibilité & droite, donc u*
est bijective, et on a trouvé son inverse.

Propriété 3
On a vu en introduction, puisque B est orthonormée, que les coefficients de la matrice de u* dans B étaient
mi; = (u(e;)lei) = (ejlu(e:)) = (u(ei)le;) = [matps(u)];

Propriété 4
Soit F stable par u et soit x € F*. Soit y € F.
(W (z),y) = (z,u(y)) =0

Propriété 5

On commence par montrer le lemme :

r—' Lemme 3 :

Soit (e1,...,en) une base orthonormée de E.

u=u & Vi,je[l,n], (ule) e;) = (ei)ule;))

Puis on prend u € Z(FE) et soit B une base orthonormée de E. Soit M = matg(u). On a vu en introduction du
chapitre :
mij = (u(e;), €:)

Par le lemme, u € S(E) & Vi,j, mi; =m;; < M € S,(R).

Propriété 6

e Id € S(E) et S(E) C Z(E).

Soient A € R, u,v € S(E). On a vu que u — u* est linéaire.
Donc (Au+v)* = Au™ +0* = du+ v.

S(E) est un sous-espace vectoriel de £ (E).

Remarque : (uov)* =v* ou” =vou n’est égal & uowv que si u et v commutent.

S(E) — Sa(R)

u —  mats(u) ) est un isomorphisme.

e Soit B une base orthonormée de E. L’application f : (
Donc dim S(E) = dim S, (R) = 220,

Propriété 8

Soient E, et Ez deux espaces propres de u € S(F) avec a # 8. Soient x € E, et y € Eg. On a u(z) = az et u(y) = By.

(u(z),y) = (=, u(y)) donc afz,y) = B(z,y). Puis (z,y) = 0.

Théoréme 2
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r—| Lemme 4 }

Tout endomorphisme d’un espace vectoriel de dimension finie admet une droite ou un plan stable.

Démonstration du lemme 4

Soit v un endomorphisme de E et 7, son polynéme minimal.

PREMIER CAS : si 7, admet une racine dans R, alors u admet une valeur propre, et un vecteur propre associé e. Vect(e) est
une droite stable par u.

DEUXIEME CAS : m, n’admet aucune racine dans R. On peut ’écrire m, = P; X --- X P, produit de polynémes de de-
gré 2 sans racines réelles.

0=myu(u) =Pi(u)o---0 Pr(u)
Par définition du polyndéme minimal, P;(u) n’est pas bijectif et n’est pas injectif. Notons Py = X2 + aX + b. Tl existe ¢ # 0
tel que Pi(u)(z) = 0. On a u?(e) € Vect(e, u(e)), ce qui permet d’avoir Vect(e, u(e)) stable par .

Remarque : il s’agit d’un plan, puisque e # 0 et qu’on a supposé que u n’avait pas de valeur propre.

—' Lemme 5 }

Tout endomorphisme autoadjoint d’un espace euclidien non nul admet au moins une valeur propre.

Démonstration : soit v € S(E) avec dim E > 1.
SidimE =1 : il existe e # 0 dans E. E = Vect(e) et u(e) est de la forme ce.

Si dim F = 2 : la matrice de u dans une base orthonormale de E est symétrique, de la forme . Son polynoéme

a
b
caractéristique est xu = X2 — (@ + ¢)X + (ac — b?) de discriminant (a + ¢)® — 4(ac — b*) = (a — ¢)? + 4b*> > 0.
L’endomorphisme v admet donc au moins une valeur propre réelle.

Si dim E > 2 : ’endomorphisme u admet au moins une droite ou un plan stable (lemme 4). L’endomorphisme induit sur
cette droite ou ce plan est encore autoadjoint et posséde (par les deux premiers cas qu’on vient de traiter) une valeur propre.

e Montrons maintenant (1) = (2) : tout endomorphisme autoadjoint de E est diagonalisable dans une base orthonor-
male. On proceéde par récurrence sur la dimension de E.

Py, : « pour tout endomorphisme autoadjoint u d’un espace E de dimension n, il existe une base orthonormale de E consti-
tuée de vecteurs propres de u. »

— Soit E de dimension 1. La matrice de u € .Z(F) dans cette base est diagonale. P est vraie.

— Soit n € N* tel que P, est vraie. Soit u un endomorphisme autoadjoint en dimension n + 1. Par le lemme, v admet
une valeur propre réelle, et un vecteur propre associé xo.
F = Vect(xo) est stable par u. Par propriété, F* est stable par u autoadjoint.
ur et up1 sont encore autoadjoints (a vérifier rapidement). Par Pi et P,, il existe B; base orthonormée de F et Bo
base orthonormée de F'* constituées de vecteurs propres de u.

1
Comme F & Ft = FE, la concaténation B de B; et B2 est une base orthonormée de E.
Pr+1 est vraie, ce qui achéve la récurrence.

e (1) = (3). On poursuit le raisonnement précédent pour v un endomorphisme autoadjoint en dimension n. Puisque u est
diagonalisable, E est somme directe des espaces propres de u. Et on a vu a la propriété 8 que les espaces propres étaient
deux & deux orthogonaux.

e (3) = (2). Si FE est somme directe orthogonale d’espaces propres de u, alors une base orthonormale adaptée a cette
somme directe est une base orthonormale de F constituée de vecteurs propres de u.

e (2) = (1). 1l existe une base orthonormée de E dans laquelle la matrice de u est diagonale, donc symétrique. Par
propriété, u est autoadjoint.

Caractérisation spectrale — propriété 9

Soit B = (e1,...,en) une base orthonormée de vecteurs propres de u (par le théoréme spectral), et (A1,...,An) les va-
leurs propres associées.
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Soit z = ) wse;. On a

i=1
u(z) = Z AiTie; (u(x),z) = Z X}
=1 =1

« Supposons que u € ST(E).
En prenant x = e; dans ce qui précede, on trouve A\; = (u(e;),e;) = 0.
Et si u € ST(E), puisque e; # 0, on trouve A; > 0.

« Réciproquement, supposons que Sp(u) C R*.
Comme somme de positifs, (u(z),z) > 0 et il a égalité si et seulement si, Vi, \;z7 = 0.

Si Sp(u) C R™, on a donc bien aussi : (u(z),z) =0 =z = 0.

Définition-propriété 5

« (H)=(2)
On suppose que u conserve la norme. Par formule de polarisation :
1
(u(@),u(y) = 5 (lu@)+ u))* = llu@)|* = lluly)]*)

= L (e + ) = @) ~ uw)?)

1

= Sl +ull* = lll* = lIyl*)

= (%)
e (2) = (1) (facultatif)
On suppose que u conserve le produit scalaire. Alors ||u(x)|?> = (u(x),u(x)) = (z,z) = ||z||* et par positivité de la norme,
[u(x) [l = llz|-
+ (2)=0)
Supposons que u conserve le produit scalaire. Soit (e, ..., e,) une base orthonormée de E.
(u(eq), ule;)) = (ei,ej) = &;,5. Donc (u(er),...,u(en)) est une famille orthonormée de E. On termine comme d’habitude
pour base.
3=

Supposons que u conserve les bases orthonormées de E.

Soit « € E. Siz =0, [lu(z)|| = |[u(0)]| = 0 =[|0] = [l|.

Siz#0, ﬁ est de norme 1, et peut étre complété en B base orthonormée de E.

Par hypothese, u(B) est une base orthonormée, donc en particulier, u(ﬁ) est de norme 1.

Donc || pgu(@)| = 1 puis [Ju(z)]| = ||z]].

Propriété 10

¢ Montrons que O(F) C GL(E).

Soit u une isométrie vectorielle et x € keru. On a ||z|| = ||u(z)|| = ||0]] = 0. Donc & = 0. u est donc injectif. S’agissant d’un
endomorphisme de E de dimension finie, u est bijectif.

e Idg conserve la norme, Idg € O(FE).
« Soient u et w dans O(F). Montrons que v ow™' € O(E). Soit « € E.

@l = @l = e @)= o
Propriété 11

e On suppose que u est une isométrie. On a vu a la propriété 10 que u était bijectif. Pour x et y dans F,

(u(@),y) = (u(z),uou™ (y)) = (z,u™" (y))

donc u* = w1,

o On suppose que u est bijectif et que u* = u™".

lu(@)]? = (u(@), u(@)) = (z,u" (u(2))) = (z,z)
Propriété 12

On note M la matrice de u dans une base orthonormée.
Par la propriété précédente, u est une isométrie si, et seulement si, uou* = Id si, et seulement si, MM " = I,, si, et seulement
si, M est une matrice orthogonale.
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Propriété 13

a2+ =1
a b , V+d® =1 .
Soit M = une matrice orthogonale. On a les équations . On procéde par astuce avec (x), en
c d ab+ced =0 (%)
ad —bc = +1
essayant de fournir une colinéarité sur un vecteur non nul :
% —d .
Par (*), b | = 0, avec (a,c) # 0 puisque sa norme est 1

Il existe un réel « tel que (bd> =« (Z) . Donc a € {—1,1}.
de norme 1 de norme 1
PREMIER CAS : = 1. M = (LCL Ca> et det(M) = —(a® +c*) = —1.

La relation a? + ¢ = 1 fournit a® < 1, puis —1 < a < 1, et Pexistence de 6 réel tel que a = cosf. On en déduit que
¢ = £ sin . Mais quitte & changer 6 en —0, il existe 0 réel tel que ¢ = sin 6.

cosf  sinf
M est de la forme <sin0 _ cos 0) = 5(0).

DEUXIEME CAS : @ = —1. M = Z ac> et det(M) = a* 4+ ¢ = 1. Par les mémes calculs/raisonnements qu’au pre-

mier cas, 30 € R, a = cosf et ¢ =sinf. M est de la forme R(6).

Propriété 14

Ce sont les formules trigonométriques et le calcul matriciel R(0) R(f') qui donnent la matrice R(# + 6'). Soit

(U, x)  — (SO2(R), x)
(R e Re(z) —Im(z)\ _[cosf —sind
z=e? o (Im(z) Re(z) ) h (sin@ cos 6 )
e 1) est bien définie.

e 1) est un morphisme de groupes :

P(z2) = () = R(0 +0') = RO)R(Y') = (2)9(")

¢ 1) est surjective par la propriété précédente (prop. 14).
e Y(z) =5 & {c?se =1 < 0 € 2nZ < z = 1. Donc % est injective.

sind =0
Propriété 15
e Soit u une isométrie positive.
Soit Bp une base orthonormée directe de E. La matrice de u dans cette base est orthogonale positive, donc il existe 6 (unique
modulo 27) tel que matg,(u) = R(f). Soit B une base orthonormée directe de E, et P la matrice de passage de B & By. En
tant que matrice de passage entre deux bases orthonormées, P est une matrice orthogonale. Comme on passe d’une base
directe & une base directe, det(P) =1, et P € SO2(R).
Par formule de changement de bases, mats(u) = P x R(0) x P™.
On a vu dans la propriété précédente (propriété 14) que S02(R) était un groupe commutatif. Donc ces trois matrices com-
mutent, donc matg(u) = R(9).
Remarque : dans une base orthonormée indirecte, on peut montrer que mat(u) = R(—#6).

e Soit u une isométrie négative. Par la propriété 13, il existe une base orthonormale de E dans laquelle mat(u) = S(6).
Comme [S(0))]> = Iz, ona xu = X> — 1= (X —1)(X + 1) et xu est scindé & racines simples, donc u est diagonalisable, de
spectre {—1,1}.
Pour x € F1 et ye E_1,0n a

(z,y) = (u(z), —u(y)) = —(z,y) puis (z,y) =0
Les espaces propres sont donc orthogonaux, et on peut considérer une base orthonormée (xo,yo) de F1 @ E_1 = E; dans
cette base orthonormée, la matrice de u est é _01> Et u est la symétrie orthogonale par rapport a Vect(zo). C’est une

réflexion car dim Vect(zo) = dim F — 1.
Lemme 1

Soit u € O(E), et X € Sp(u). Il existe  # 0 tel que u(z) = Az. Comme u conserve la norme, ||Az|| = ||z||, puis [A|||z]| = ||z]].
Comme z # 0, ||z|| # 0, et |[A\| = 1.
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u est un endomorphisme d’un R-espace vectoriel... A € {—1,1}.

Lemme 2

Soit F stable par I'isométrie vectorielle u. On a u(F) C F.

Avoir Uil ! u(F) et F sont de méme dimension car u est bijectif. Donc u(F) = F. Cela va servir!
Soit & € F+. Soit y € F. Par ce qui précede, il existe t € F tel que y = u(t).

(u(z),y) = (u(x),u(t)) = (z,t) = 0.

F est aussi stable par u.

Théoréme 3

Soit P, : « pour toute isométrie d’'un espace euclidien £ de dimension n, il existe une base orthonormée de FE dans laquelle
la matrice de u est diagonale par blocs avec des blocs diagonaux de la forme (1), (—1), R(0) avec 6 ¢ {0, 7} ».

On montre cette propriété par récurrence forte pour n > 1.

e P; est vraie. Tout vecteur non nul est vecteur propre, et par le lemme 1, les valeurs propres possibles sont 1 et —1.

P2 est vraie (cf. réduction des isométries en dimension 2).

e Soit n > 2 tel que P, ..., P, sont vraies, et soit u isométrie d’un espace euclidien F de dimension n + 1.

Par le lemme 4, il existe une droite ou un plan stable par u.

— S'il existe une droite D = Vect(e) stable par u, alors d’une part, e est vecteur propre de u associé, par le lemme 1, a la
valeur propre 1 ou —1. D’autre part, par le lemme 2, D» est stable par u. w1 est encore une isométrie (la propriété
de conservation de la norme reste vraie par restriction), en dimension n. Par hypotheése de récurrence, il existe une
base orthonormée B de D+ dans laquelle la matrice de upL est diagonale par blocs avec des blocs comme annoncé.
Soit B’ la concaténation de (e) et B. C’est une base orthonormée de E dans laquelle la matrice de u est de la forme
voulue.

— Sinon, il existe P plan stable par u.

up est une isométrie en dimension 2, et il existe une base orthonormée B; dans laquelle mat(up) est de la forme R(6)
1 0
0o —-1)/)°
(Remarque : c’est forcément R(0) puisqu’on s’est ici placé dans le cas ou u n’admettait pas de droite stable.)
Et par le lemme 2, P est stable par u. up. est encore une isométrie, en dimension n— 1. Par hypothése de récurrence,
il existe une base orthonormée B de P+ dans laquelle la matrice de up1 est diagonale par blocs avec des blocs comme
annoncé.
Soit B’ la concaténation de By et Ba. C’est une base orthonormée de E dans laquelle la matrice de u est de la forme
voulue.

ou
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Pour moi : classification des isométries en dimension 3, en fonction des éléments propres

isométrie déterminant  spectre matrice dans une certaine base orthonormée
identité (rotation d’angle 0) 1 {1} I
1 0 0
rotation d’angle m (demi-tour) 1 {1,-1} 0 -1 0
0O 0 -1
1 0 0
rotation d’angle 6 ¢ {0, 7} 1 {1} 0 cosf —sinf
0 sinf cosf
—1d -1 (-1} —I
-1 0 0
réflexion -1 {1,-1} 0 1 0
0 0 1
-1 0 0 -1 0 0 1 0 0
composée rotation-réflexion -1 {-1} 0 cosf§ —sinf|=(0 1 O 0 cosf —sind
0 sinf cosf 0 0 1 0 sinf cosf

Propriété 16

Soit p un projecteur de E espace vectoriel euclidien.

¢ Supposons que p soit un projecteur orthogonal. Soit (z,y) € E?.

(p@)y) = (p)lp(y) +y—py))
= (p(@)lp(y)) + (p(x)ly — p(y))
= (p(@)lp(y)) +0 carp(x) € Fety—py) € F*
= (p(2)lp(y))

Par symétrie des roles de x et y, on a aussi : (p(y)|z) = (p(y)|p(z)) = (p(z)|p(y)).
Et par symétrie du produit scalaire : (z|p(y)) = (p(x)|p(y)), et finalement, (p(x)|y) = (z|p(y)).

¢ Supposons que p* = p (on dit que p est autoadjoint).

p est un projecteur ; c’est la projection sur Im p parallelement & ker p. On voudrait donc montrer que
kerp = (Imp)™.

Soient x € kerp et y € Imp. 1l existe t € E tel que y = p(t). On a :

(zly) = (zlp(t))
= (p(@)t) carp”=p
= (0[t)=0
Ainsi kerp C (Im p)l. Par le théoreme du rang et propriété de 'orthogonal, nous avons :
dimker p = dim F — dim Im p = dim (Imp)J‘

et finalement, kerp = (Imp)™*. p est la projection sur Im p parallélement a (Imp)™*.
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