
Révisions – Espaces préhilbertiens réels

Les attentes

1. Savoir démontrer qu’une appication est un produit scalaire.
2. Connaître les produits scalaires canoniques sur Rn et sur Mn,p(R).

Connaître un produit scalaire sur C0([a, b],R).
3. Inégalité de Cauchy-Schwarz et cas d’égalité.
4. Identités remarquables et formule de polarisation (comment obtenir

le produit scalaire connaissant la norme ?).
5. Orthogonal d’une partie.
6. En dimension finie, dimension de F ⊥.
7. Familles orthogonales, orthonormales. Liberté.
8. Théorème de Pythagore.
9. Expression des coordonnées, du produit scalaire et de la norme dans

une base orthonormée.
10. Expression du projeté orthogonal d’un vecteur x dans une base or-

thonormée de F .
11. Théorème de distance à un sous-espace vectoriel dans un euclidien.

1. Algorithme d’orthonormalisation de Gram-Schmidt.
2. Théorème de la base orthonormée incomplète.
3. En dimension finie, projeté orthogonal d’un vecteur sur l’hyperplan

Vect(u)⊥ ; distance de x à Vect(u)⊥ (savoir effectuer efficacement
les calculs).

Dans ce chapitre, E est un R-espace vectoriel.
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1 Produit scalaire

1.1 présentation et premiers exemples

Définition 1
Un produit scalaire est une forme bilinéaire symétrique, définie positive.
Une application φ est un produit scalaire sur E si elle vérifie :

1. φ : E2 → R
2. φ est bilinéaire
3. ∀(x, y) ∈ E2, φ(x, y) = φ(y, x)
4. ∀x ∈ E, φ(x, x) ⩾ 0
5. φ(x, x) = 0 implique x = 0.

Il suffit de vérifier la linéarité à gauche et la symétrie pour justifier la bilinéarité.
Un produit scalaire est noté ⟨., .⟩ ou ⟨.|.⟩, ou (.|.).
On appelle norme euclidienne l’application, qui est en fait une norme sur E, définie par
∥x∥ =

√
⟨x|x⟩.

Remarques :
— Dire qu’un produit scalaire est une forme bilinéaire positive ne signifie pas qu’un produit scalaire

est à valeurs positives, mais que pour tout vecteur x, ⟨x|x⟩ ⩾ 0.
— Pour tout x de E, on a ⟨x|0E⟩ = 0 et en particulier ⟨0E |0E⟩ = 0.
— Pour (vi)1⩽i⩽r et (wj)1⩽j⩽s familles de vecteurs de E et (λi)1⩽i⩽r et (µj)1⩽j⩽s familles de réels, on

a : 〈
r∑

i=1
λivi

∣∣∣ s∑
j=1

µjwj

〉
=

r∑
i=1

s∑
j=1

λiµj⟨vi|wj⟩

— Pour x vecteur non nul, le vecteur 1
∥x∥

x, qu’on écrit le plus souvent x

∥x∥
, est de norme 1. Quand

on divise un vecteur v non nul par sa norme, on dit qu’on a normé le vecteur v.

Définition 2
On appelle espace préhilbertien réel tout R-espace vectoriel muni d’un produit scalaire.
Un espace préhilbertien réel de dimension finie est appelé espace euclidien.

Exercice 1 : Soit a ∈ R et E = Rn[X]. Montrer que l’application φ définie sur E2 par

φ(P, Q) =
n∑

k=0
P (k)(a)Q(k)(a) est un produit scalaire sur E.

1.2 exemples à maîtriser

1. Espace euclidien Rn muni du produit scalaire canonique
Pour n entier naturel non nul, le produit scalaire canonique sur Rn est donné par :

pour tous x = (x1, x2, . . . , xn) et y = (y1, y2, . . . , yn) de Rn, ⟨x|y⟩ =
n∑

i=1
xiyi = X⊤ Y
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où X =

x1
...

xn

 et Y =

y1
...

yn

.

2. Espace euclidien Mn(R) muni du produit scalaire Tr(A⊤ B)
Pour A et B dans Mn(R), Tr(A⊤ B) =

et Mn(R) muni de ce produit scalaire est un espace euclidien.
3. Un produit scalaire intégral dans C([a, b],R)

(C([a, b],R), ⟨.|.⟩) est un espace préhilbertien réel, où ⟨f |g⟩ =
b∫

a

f(t)g(t) dt.

4. Un produit scalaire intégral dans R[X]

(R[X], ⟨.|.⟩) est un espace préhilbertien réel, où ⟨P |Q⟩ =
1∫

0

P (t)Q(t) dt.

Il y a de nombreux produits scalaires sur R[X] !

1.3 propriétés

Propriété 1

Pour x et y vecteurs de E, on a :
• Identités remarquables :

∥x + y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x|y⟩
∥x − y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x|y⟩

∥x∥2 − ∥y∥2 = ⟨x + y|x − y⟩

• Formules de polarisation associées :

⟨x|y⟩ = 1
2
(
∥x + y∥2 − ∥x∥2 − ∥y∥2

)
⟨x|y⟩ = 1

4
(
∥x + y∥2 − ∥x − y∥2

)
• Règle du parallélogramme :

∥x + y∥2 + ∥x − y∥2 = 2∥x∥2 + 2∥y∥2
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Un peu de géométrie :
— La règle du parallélogramme dit que la somme

des carrés des longueurs des quatre côtés d’un
parallélogramme est égale à la somme des car-
rés des longueurs de ses deux diagonales.

— Si x et y sont de même norme, alors x + y et
x − y sont orthogonaux. Géométriquement, les
diagonales d’un losange sont perpendiculaires.

x

x + y

y

x − y

Propriété 2 – Théorème de Pythagore

∥x + y∥2 = ∥x∥2 + ∥y∥2 si et seulement si ⟨x|y⟩ = 0

Propriété 3 – Inégalité de Cauchy-Schwarz

Pour tous vecteurs x et y de E, on a : |⟨x|y⟩| ⩽ ∥x∥.∥y∥

Il y a égalité dans l’inégalité de Cauchy-Schwarz si et seulement si la famille (x, y) est liée.

Corollaire 1

Pour tout x = (x1, . . . , xn) ∈ Rn, tout y = (y1, . . . , yn) ∈ Rn, on a :∣∣∣∣∣
n∑

i=1
xiyi

∣∣∣∣∣ ⩽
√√√√ n∑

i=1
x2

i

√√√√ n∑
i=1

y2
i

(
n∑

i=1
xiyi

)2

⩽

(
n∑

i=1
x2

i

)(
n∑

i=1
y2

i

)
Pour f et g fonctions continues sur [a, b], on a :

∣∣∣∣∣∣
b∫

a

f(t)g(t) dt

∣∣∣∣∣∣ ⩽
√√√√√ b∫

a

(f(t))2 dt

√√√√√ b∫
a

(g(t))2 dt

 b∫
a

f(t)g(t) dt

2

⩽

 b∫
a

(f(t))2 dt

 b∫
a

(g(t))2 dt


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Exercice 2 (B.E.O.) : Soit E un R-espace vectoriel muni d’un produit scalaire noté ( | ).
1. (a) Énoncer et démontrer l’inégalité de Cauchy-Schwarz.

(b) Dans quel cas a-t-on égalité ? Le démontrer.
2. Soit E = {f ∈ C ([a, b] ,R) , ∀ x ∈ [a, b] f(x) > 0}.

Prouver que l’ensemble
{∫ b

a
f(t)dt ×

∫ b

a

1
f(t)dt , f ∈ E

}
admet une borne inférieure m et déter-

miner la valeur de m.

Propriété 4 – Inégalité triangulaire

Pour tous vecteurs x et y de E, on a l’inégalité triangulaire :

∥x + y∥ ⩽ ∥x∥ + ∥y∥

Il y a égalité si et seulement si x et y sont colinéaires et de même sens (il existe α ⩾ 0 tel que
x = αy ou tel que y = αx).

2 Familles orthogonales, orthonormales

2.1 propriétés des familles orthogonales

Définition 3 – Notions d’orthogonalité

Soient x et y deux vecteurs de E, F = (vi)i∈I une famille de vecteurs de E,
et F et G deux sous-espaces vectoriels de E.
– Vecteurs
x et y sont orthogonaux si ⟨x|y⟩ = 0.

– Famille de vecteurs
F est une famille orthogonale si pour tous i et j de I avec i ̸= j, ⟨vi|vj⟩ = 0.
F est une famille orthonormale (ou orthonormée) si F est une famille orthogonale constituée de
vecteurs de norme 1.

– Ensembles
F et G sont des sous-espaces orthogonaux si tout vecteur de F est orthogonal à tout vecteur de
G : ∀(f, g) ∈ F × G, ⟨f |g⟩ = 0.

Propriété 5

Normer les vecteurs d’une famille orthogonale sans vecteur nul, donne une famille orthonormale.

Exercice 3 : Vérifier que la base canonique de Rn est orthonormée pour le produit scalaire canonique
de Rn. Vérifier que la base canonique de Mn,p(R) est orthonormée pour le produit scalaire canonique de
Mn,p(R).

P Exercice 4 : On considère l’espace préhilbertien réel E = C([0, 2π],R) muni du produit scalaire

⟨f, g⟩ =
2π∫
0

f(t)g(t) dt. Pour n ∈ N, on pose un : t 7→ cos(nt).

Montrer que la famille (un)n∈N est orthogonale. Donner une famille orthonormale de E.
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Propriété 6

Toute famille orthogonale ne contenant pas le vecteur nul est libre.
Toute famille orthonormale est libre.

Soit (v1, v2, . . . , vp) une famille orthogonale de E. On a le théorème de Pythagore généralisé :

∥v1 + v2 + · · · + vp∥2 = ∥v1∥2 + ∥v2∥2 + · · · + ∥vp∥2

2.2 bases orthonormales dans un espace euclidien

Propriété 7 – Écriture d’un vecteur dans une base orthonormée

Soit (e1, e2, . . . , en) une base orthonormée de E. Pour tout x de E :

x = ⟨x|e1⟩e1 + ⟨x|e2⟩e2 + · · · + ⟨x|en⟩en

x =
n∑

i=1
⟨x|ei⟩ei

∥x∥2 =
n∑

i=1
⟨x|ei⟩2

Exercice 5 :
a ∈ R et E = Rn[X]. On reprend le produit scalaire défini sur E2 par

⟨P |Q⟩ =
n∑

k=0
P (k)(a)Q(k)(a)

Pour i ∈ J0, nK, Pi = (X − a)i.
1. Montrer que (P0, P1, . . . , Pn) est une famille orthogonale de E.
2. En déduire une base orthonormale de E, notée B.
3. Exprimer les coordonnées d’un polynôme P de E dans B à l’aide des dérivées successives de P en

a. Retrouver ainsi la formule de Taylor pour les polynômes.

Propriété 8

Soit B une base orthonormée de E. On note X et Y les matrices colonnes des coordonnées de x et
y dans B. On a :

⟨x|y⟩ = X⊤ Y et ∥x∥2 = X⊤ X
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Propriété 9 – procédé d’orthonormalisation

Soit (e1, e2, . . . , ep) une famille libre de E. Le procédé d’orthonormalisation de Gram-Schmidt
consiste à définir les vecteurs s1, s2, . . . , sp comme suit :

s1 = e1
∥e1∥

pour i ⩾ 2, si = ui

∥ui∥
où ui = ei −

i−1∑
k=1

⟨ei|sk⟩sk

La famille (s1, s2, . . . , sp) ainsi construite est une famille orthonormale et

∀r ∈ J1, pK, on a Vect(s1, s2, . . . , sr) = Vect(e1, e2, . . . , er)

Si l’on recherche une famille orthogonale, pas forcément orthonormale, il faut quand même appliquer de
la même façon le procédé de Schmidt.

Exercice 6 : Orthonormaliser la famille (1, X, X2) pour le produit scalaire ⟨P |Q⟩ =
1∫
0

P (t)Q(t) dt.

Théorème 1
Tout espace euclidien possède une base orthonormée.
Toute famille orthonormée d’un espace euclidien E peut être complétée en base orthonormée de
E.

Exercice 7 : Soit E un espace vectoriel euclidien de dimension n ⩾ 2. Soit (a, b) une famille orthonormale
de E. On considère l’endomorphisme f de E donné par :

f(x) = ⟨x, a⟩b − ⟨x, b⟩a

Écrire la matrice M de f dans une base « la mieux choisie possible » de E.

3 Orthogonal d’une partie

Définition - propriété 1

Soit A une partie de E. L’orthogonal de A, noté A⊥, est l’ensemble des vecteurs de E qui sont
orthogonaux à tous les vecteurs de A.

A⊥ = {x ∈ E | ∀y ∈ A, ⟨x|y⟩ = 0}

C’est un sous-espace vectoriel de E. On a : A⊥ = (Vect(A))⊥.

Exercice 8 :
1. Reconnaître l’orthogonal d’un espace pour D = {(x, y) ∈ R2, 2x − 7y = 0}. Dans le plan, quel est

un vecteur normal n⃗ de la droite d’équation −7y + 2x = 0 ?
2. Reconnaître l’orthogonal d’un espace pour P = {(x, y, z) ∈ R3, x + y − z = 0}. Dans l’espace, quel

est un vecteur normal n⃗ du plan d’équation x + y − z = 0 ?
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Remarque : soit F = Vect(f1, f2, . . . , fp). Pour montrer qu’un vecteur x est orthogonal à tout vecteur de
F , il suffit de montrer que x est orthogonal à tout vecteur d’une famille génératrice de F .

x ∈ F ⊥ ⇔ ∀i ∈ J1, pK, ⟨x|fi⟩ = 0

Par exemple, complétons les équivalences suivantes.

P ∈ (Vect(X7 − 1, X3, X7 + X2))⊥ ⇔
{

f ∈ (Vect(x 7→ sin x, x 7→ cos x))⊥ ⇔
{

Propriété 10

{0E}⊥ = E et E⊥ = {0E}.
Le vecteur nul est le seul vecteur orthogonal à tous les vecteurs de E.

△! F et G sont orthogonaux ⇔ F ⊂ G⊥ ⇔ F ⊥ G ⇔ G ⊂ F ⊥

Il n’y a pas forcément égalité.

Propriété 11

Soit E un espace préhilbertien réel (de dimension finie ou non) et F un sous-espace vectoriel de
dimension finie de E.

• F ⊥ est un supplémentaire de F orthogonal à F , et c’est même le seul. On l’appelle supplé-
mentaire orthogonal de F .

F
⊥
⊕ F ⊥ = E

• On a (F ⊥)⊥ = F .

Exercice 9 :
1. Donner un supplémentaire de D = Vect ((1, 1)) dans R2. Nous commenterons.
2. Donner l’orthogonal de {(x, y, z) ∈ R3, 2x − 3y + z = 0}.
3. Donner l’orthogonal dans Mn(R) de ker Tr.
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4 Projection orthogonale sur un sous-espace de dimension finie

Définition 4

On suppose que F est un sous-espace vectoriel de E pour lequel F ⊕ F ⊥ = E.
On appelle projection orthogonale sur F , la projection sur F parallèlement à F ⊥.

Propriété 12 – Caractérisation de pF (x)

pF (x) est caractérisé par :
{

pF (x) ∈ F

x − pF (x) ∈ F ⊥

En écrivant ces deux conditions, on obtient des équations qui nous permettront de trouver
pF (x).

Exercice 10 : En s’aidant, pour comprendre, d’un schéma, montrer que pour tout x ∈ E, on a
∥pF (x)∥ ⩽ ∥x∥.

Propriété 13 – Expression de pF (x) dans une base orthonormée de F

On considère la projection orthogonale sur F , notée pF .
Soit (v1, v2, . . . vp) une base orthonormale de F . On insiste sur le fait que p = dim F . Pour tout x
de E, on a :

pF (x) =
p∑

i=1
⟨x|vi⟩vi

4.1 distance à un sous-espace de dimension finie

La distance de x à l’ensemble A est d(x, A) = inf
a∈A

∥x − a∥.
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Théorème 2
Soit F un sous-espace vectoriel de dimension finie de E et x ∈ E. La distance de x à F est atteinte
en pF (x), où pF désigne la projection orthogonale sur F . Autrement dit,

d(x, F ) = ∥x − pF (x)∥

De plus, pF (x) est l’unique vecteur y de F tel que d(x, F ) = ∥x − y∥.

4.2 cas particulier des hyperplans

Soit E un espace euclidien de dimension non nulle et H un hyperplan de E.
Il existe un vecteur non nul n de E tel que H = (Vect(n))⊥. Un tel vecteur n est un vecteur normal à
l’hyperplan H.

H

H⊥

n

x

• Le projeté orthogonal de x sur Vect(n) est

• Le projeté orthogonal de x sur H est

• La distance de x à H est
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Exercice 11 (oral Mines-Télécom 2023) : Soit n ∈ N∗. On note Sn(R) l’ensemble des matrices symétriques
de Mn(R) et An(R) = {M ∈ Mn(R) | MT = −M} l’ensemble des matrices antisymétriques.

1. Montrer que An(R) et Sn(R) sont supplémentaires dans Mn(R).

2. Montrer que Sn(R) = An(R)⊥. On note M =

 0 2 1
2 0 1

−1 −1 0

.

3. Calculer la distance de M à S3(R).
Soit H = {M ∈ Mn(R) | tr(M) = 0}.

4. Montrer que H est un espace vectoriel de dimension finie à déterminer.
5. On note J la matrice de Mn(R) dont tous les coefficients sont 1. Calculer la distance de J à H.
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5 Annexe : quelques éléments de démonstrations
Inégalité de Cauchy-Schwarz en page 4
Soient x et y deux vecteurs de E. On introduit :

P (t) = ∥tx + y∥2 = ⟨tx + y|tx + y⟩
= t2∥x∥2 + ∥y∥2 + 2t⟨x|y⟩

P est un polynôme ; il est du second degré si et seulement si x ̸= 0.

Premier cas : x ̸= 0
On a P (t) ⩾ 0 pour tout t, donc P est de signe constant, donc ∆ ⩽ 0.
Donc 4

(
⟨x|y⟩2 − ∥x∥2∥y∥2) ⩽ 0 et donc

|⟨x | y⟩| ⩽ ∥x∥ ∥y∥
De plus :

il y a égalité dans cette égalité si et seulement si ∆ = 0
si et seulement si

on sait que P a 0 ou 1 racine
il existe t0 ∈ R tel que ∥t0x + y∥2 = P (t0) = 0

si et seulement si il existe t0 ∈ R tel que t0x + y = 0

Deuxième cas : x = 0
On a l’égalité : |⟨x | y⟩| = 0 = ∥x∥ ∥y∥.

En conclusion, on a toujours l’inégalité de Cauchy-Schwarz. Et on a égalité si et seulement si x est nul, ou (x ̸= 0 et (x, y) est liée),
donc en résumé on a bien égalité si et seulement si (x, y) est liée.

Inégalité triangulaire en page 5
On a :

(∥x∥ + ∥y∥)2 − ∥x + y∥2 = ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥ −
(
∥x∥2 + ∥y∥2 + 2⟨x|y⟩

)
= 2 (∥x∥∥y∥ − ⟨x|y⟩)
⩾ 0 par l’inégalité de Cauchy-Schwarz

donc ∥x∥ + ∥y∥ ⩾ ∥x + y∥

• S’il y a égalité dans l’inégalité triangulaire, alors ⟨x, y⟩ = ∥x∥∥y∥, et par le cas d’égalité de Cauchy-Schwarz, (x, y) est liée.
Soit x = 0 (et x = 0y), soit x ̸= 0 et il existe a réel tel que y = ax. Auquel cas, ∥x + y∥ = ∥x∥ + ∥y∥ fournit |1 + a| = 1 + |a|.
Le cas a < −1 est exclu car il conduit à a − 1 = 1 − a (a = 1). Le cas −1 ⩽ a < 0 est exclu car il conduit à 1 + a = 1 − a
soit a = 0. Donc a ∈ R+.
S’il y a égalité dans l’inégalité triangulaire, alors il existe a ∈ R+ tel que y = ax.
• Réciproquement, s’il existe a ∈ R+ tel que y = ax, alors

∥x + y∥ = |1 + a|∥x∥ = (1 + a)∥x∥ = ∥x∥ + ∥ax∥ = ∥x∥ + ∥y∥

Propriété 6 en page 6
Soit (v1, . . . , vp) une famille orthogonale de vecteurs de E ne contenant pas le vecteur nul. Montrons que cette famille
est libre.
Soient α1, . . . , αp des scalaires tels que α1v1 + α2v2 + · · · + αpvp = 0E . En particulier, pour i ∈ J1, pK :

⟨α1v1 + α2v2 + · · · + αpvp|vi⟩ = ⟨0E |vi⟩ = 0
par linéarité à gauche :

α1⟨v1|vi⟩ + α2⟨v2|vi⟩ + · · · + αp⟨vp|vi⟩ = 0
et comme la famille de vecteurs est orthogonale :

0 + · · · + 0 + αi⟨vi|vi⟩ + 0 + · · · + 0 = 0
αi∥vi∥2 = 0

Enfin, comme aucun des vecteurs n’est nul, ∥vi∥ ̸= 0, et donc αi = 0.
La famille (v1, . . . , vp) est libre.

Une famille orthonormale est en particulier une famille orthogonale qui ne contient pas le vecteur nul (tous ses vecteurs sont
de norme 1, donc non nuls). Par ce qui précède, une famille orthonormale est donc libre.
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Généralisation du théorème de Pythagore en page 6
Soit (v1, v2, . . . , vp) une famille orthogonale de vecteurs de E. Par bilinéarité du produit scalaire au passage (∗) :

∥v1 + v2 + · · · + vp∥2 = ⟨v1 + v2 + · · · + vp|v1 + v2 + · · · + vp⟩

=

〈
p∑

i=1

vi|
p∑

j=1

vj

〉
==

(∗)

p∑
i=1

p∑
j=1

⟨vi|vj⟩

comme la famille est orthogonale, pour i ̸= j, ⟨vi|vj⟩ = 0

=
p∑

i=1

(0 + · · · + 0 + ⟨vi|vi⟩ + 0 + · · · + 0) =
p∑

i=1

∥vi∥2

Définition-propriété 1 en page 7
En relisant la définition de A⊥, on a A⊥ ⊂ E (1).
De plus, pour tout vecteur y de A, on a ⟨0E |y⟩ = 0 (c’est une propriété du vecteur 0E). Donc 0E ∈ A⊥ (2).
Soient (x, x′) ∈ (A⊥)2 et (λ, µ) ∈ R2.
Pour tout y ∈ A, on a :

⟨λx + µx′|y⟩ = λx|y⟩ + µ⟨x′|y⟩ (bilinéarité du produit scalaire)
= λ.0 + µ.0 car x et x′ sont orthogonaux à tous les y de A

= 0

Ainsi λx + µx′ est orthogonal à tous les vecteurs de A, autrement dit appartient à A⊥.
∀(x, x′) ∈ (A⊥)2, ∀(λ, µ) ∈ R2, λx + µx′ ∈ A⊥ (3).

Propriété 7
Soit (e1, . . . , e2, . . . , en) une base orthonormée de E. Soit x ∈ E. x s’écrit

n∑
i=1

xiei.

Pour k ∈ J1, nK, on a :

⟨x|ek⟩ = ⟨x1e1 + · · · + xnen|ek⟩
par linéarité à gauche du produit scalaire :

= x1⟨e1|ek⟩ + x2⟨e2|ek⟩ + · · · + xn⟨en|ek⟩
et comme la famille (e1, e2, . . . , en) est orthonormale :

= x1.0 + · · · + xk−1.0 + xk.1 + xk+1.0 + · · · + xn.0
= xk

Les coordonnées de x dans la base (e1, e2, . . . , en) sont données par xk = ⟨x|ek⟩.

Avec ces notations, on a aussi par bilinéarité du produit scalaire :

∥x∥2 =

〈
n∑

i=1

xiei

∣∣∣ n∑
j=1

xjej

〉
=

n∑
i=1

n∑
j=1

xixj⟨ei|ej⟩ =
n∑

i=1

xi

n∑
j=1

xj⟨ei|ej⟩

et comme la famille (e1, e2, . . . , en) est orthonormale :

=
n∑

i=1

xi(0 + · · · + 0 + xi.1 + 0 + · · · + 0)

n∑
i=1

x2
i =

n∑
i=1

⟨x|ei⟩2

Propriété 8 en page 6
Soit B = (e1, . . . , en) une base orthonormée de E. On note X et Y les matrices colonnes des coordonnées de x et y dans B.
On a :

X =


x1
x2
...

xn

 où x = x1e1 + x2e2 + · · · + xnen

y =


y1
y2
...

yn

 où y = y1e1 + y2e2 + · · · + ynen
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⟨x|y⟩ =

〈
n∑

i=1

xiei

∣∣∣ n∑
j=1

yjej

〉
=

n∑
i=1

n∑
j=1

xiyj⟨ei|ej⟩ (bilinéarité du produit scalaire)

=
n∑

i=1

xi

n∑
j=1

yj⟨ei|ej⟩

=
n∑

i=1

xi (0 + · · · + 0 + yi + 0 + · · · + 0) (B est une famille orthonormale)

=
n∑

i=1

xiyi =
(
x1 x2 . . . xn

)
y1
y2
...

yn

 = X⊤ .Y

Procédé de Schmidt en page 7
Soit (e1, e2, . . . , ep) une famille libre de E. On définit les vecteurs (si)1⩽i⩽p par

s1 = e1

∥e1∥

pour i ⩾ 2, si = ui

∥ui∥
où ui = ei −

i−1∑
k=1

⟨ei|sk⟩sk

Pour n ∈ J1, pK, on nomme Pn la propriété :

« (s1, s2, . . . , sn) est une famille orthonormale et pour r ⩽ n, Vect < s1, s2, . . . , sr > = Vect < e1, e2, . . . , er > »

et on la démontre par récurrence finie.

• s1 est un vecteur de norme 1 et on a
Vect < s1 > = Vect < v1 >. P1 est vraie.

• supposons Pn vraie pour un certain entier n compris entre 1 et p − 1.
On rappelle que un+1 = en+1 −

n∑
k=1

⟨ei|sk⟩sk.

D’après Pn, on a Vect < s1, s2, . . . , sn > = Vect < e1, e2, . . . , en >. Comme (ei)1⩽i⩽p est libre, en+1 n’est pas combinaison
linéaire de e1, e2, . . . , en, donc en+1 n’est pas combinaison linéaire de s1, s2, . . . , sn et donc un+1 ̸= 0. Cela a bien un sens de
considérer sn+1 = un+1

∥un+1∥ , et ce vecteur est de norme 1.

Pour k ∈ J1, nK, on a (par linéarité à droite) :

⟨un+1|sk⟩ = ⟨en+1|sk⟩ −
n∑

j=1

⟨en+1|sj⟩⟨sj |sk⟩

= ⟨en+1|sk⟩ − (0 + 0 + · · · + 0 + ⟨en+1|sk⟩.1 + 0 + 0 + · · · + 0)
car (si)1⩽i⩽n est orthonormale, par Pn

= 0

⟨sn+1|sk⟩ =
〈

un+1

∥un+1∥ |sk

〉
= 1

∥un+1∥⟨un+1|sk⟩ = 1
∥un+1∥ .0

= 0

On sait déjà que la famille (si)1⩽i⩽n est orthonormale ; on obtient là : la famille (si)1⩽i⩽n+1 est orthonormale.

De plus, par hypothèse de récurrence, Vect < s1, s2, . . . , sn > = Vect < e1, e2, . . . , en >, et par définition de sn+1, sn+1 est
combinaison linéaire de en+1, s1, s2, . . . , sn, donc
Vect < s1, s2, . . . , sn+1 > ⊂ Vect < e1, e2, . . . , en+1 >.

Enfin, (s1, s2, . . . , sn+1) est une famille orthonormale donc c’est une famille libre.
On a donc dim (Vect < s1, s2, . . . , sn+1 >) = n + 1.
Par ailleurs, (e1, e2, . . . , en+1) est libre (sous-famille de la famille libre (ei)1⩽i⩽p), donc dim (Vect < e1, e2, . . . , en+1 >) = n+1.
On a une inclusion et égalité des dimensions donc Vect < s1, s2, . . . , sn+1 > = Vect < e1, e2, . . . , en+1 >.
Pn+1 est vraie, ce qui achève la récurrence.
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Théorème 1 en page 7
• Comme E est un espace vectoriel de dimension finie, il existe une base (e1, e2, . . . , en) de E. C’est une famille libre de
E. Par le procédé d’orthonormalisation de Schmidt, il existe une famille orthonormale (w1, w2, . . . , wn) de E. Toute famille
orthonormale est libre donc (w1, w2, . . . , wn) est une famille libre de E.
Comme E est de dimension n, cette famille libre à n vecteurs est une base de E.
Autre rédaction : dans le procédé de Schmidt, pour tout r ∈ J1, nK, on a
Vect(w1, w2, . . . , wr) = Vect(e1, e2, . . . , er).
En particulier, Vect(w1, w2, . . . , wn) = Vect(e1, e2, . . . , en) = E. La famille (w1, w2, . . . , wn) est donc une famille génératrice
de E.
En conclusion, il existe une base orthonormée de E.

• Soit (e1, e2, . . . , ep) une famille orthonormée de E. C’est une famille libre de E. Par le théorème de la base incom-
plète, on peut compléter cette famille en base (e1, e2, . . . , ep, ep+1, . . . , en) de E. Par le procédé d’orthonormalisation de
Schmidt, il existe une base (w1, w2, . . . , wn) de E. En relisant la construction des vecteurs dans le procédé de Schmidt :

w1 = e1

∥e1∥

pour i ⩾ 2, wi = ui

∥ui∥
où ui = ei −

i−1∑
k=1

⟨ei|wk⟩wk

on s’aperçoit que (e1, e2, . . . , ep), déjà orthonormée, n’est pas modifiée par le procédé, c’est-à-dire que
w1 = e1, w2 = e2, . . . , wp = ep.
On trouve donc : (e1, e2, . . . , ep, wp+1, . . . , wn) est une famille orthonormée de E, et comme expliqué au premier point, c’est
une base de E.
En conclusion, toute famille orthonormée de E peut être complétée en base orthonormée de E.

Propriété 11
Remarquons que si F = {0}, on a F ⊥ = E et {0} ⊕ E = E, donc F ⊕ F ⊥ = E. De même si F = E, car alors F ⊥ = {0}.
Dans la suite, on suppose que F n’est pas réduit à {0}.

• Cas où E est de dimension finie. (ce n’est pas nécessaire de distinguer ce cas, son seul mérite est de donner concrète-
ment F ⊥).
Nous considérons F un sous-espace vectoriel de E de dimension p comprise entre 1 et n − 1, où n = dim E. Il existe une
base orthonormée (b1, b2, . . . , bp) de F , qu’on complète en (b1, b2, . . . , bn) base orthonormée de E.
Montrons que F ⊥ = Vect(bp+1, bp+2, . . . , bn).

Soit x =
n∑

i=1

xibi un vecteur de E. On a :

x ∈ F ⊥ ⇔ ∀j ∈ J1, pK, ⟨x|bj⟩ = 0

⇔ ∀j ∈ J1, pK,

〈
n∑

i=1

xibi

∣∣bj

〉
= 0

⇔ ∀j ∈ J1, pK,
n∑

i=1

xi ⟨bi|bj⟩ = 0 par linéarité à gauche

⇔ ∀j ∈ J1, pK, 0 + 0 + · · · + 0 + xj .1 + 0 + 0 + · · · + 0 = 0 car la famille (bi) est orthonormale

⇔ x =
n∑

i=p+1

xibi

donc F ⊥ = Vect(bp+1, bp+2, . . . , bn).
Comme la famille (bi)p+1⩽i⩽n est orthonormale, elle est libre, et c’est donc une base de F ⊥.
Donc dim F ⊥ = n − p et donc dim F + dim F ⊥ = n.

• On a montré que dim F + dim F ⊥ = dim E et vérifie facilement que F ∩ F ⊥ = {0}. Par propriété, F ⊕ F ⊥ = E.

• Par le premier point, dim(F ⊥)⊥ = dim E − dim F ⊥ = dim F . Montrons que F ⊂ (F ⊥)⊥ pour obtenir (F ⊥)⊥ = F .
Soit x ∈ F ; soit y ∈ F ⊥. On a ⟨x|y⟩ = 0. Donc x est orthogonal à tous les vecteurs de F ⊥, soit x ∈ (F ⊥)⊥ (∗).
F ⊂ (F ⊥)⊥ puis F = (F ⊥)⊥.

Cas général
• On vérifie facilement que F ∩ F ⊥ = {0}. Montrons que E ⊂ F + F ⊥. Soit une base orthonormée (b1, b2, . . . , bp) de F .
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Soit x ∈ E. On remarque que

x =
p∑

i=1

⟨x|bi⟩bi︸ ︷︷ ︸
∈F

+ x −
p∑

i=1

⟨x|bi⟩bi︸ ︷︷ ︸
∈F ⊥

Donc x ∈ F + F ⊥.
Ainsi E = F ⊕ F ⊥.

• Montrons que F ⊥ est le seul supplémentaire de F dans E orthogonal à F . Soit G un tel supplémentaire.
De G ⊥ F , on déduit G ⊂ F ⊥. Réciproquement, soit x ∈ F ⊥. On décompose x dans la somme directe F

⊥
⊕G = E : x = f +g.

Comme on veut montrer que f est nul, une idée est de calculer ∥f∥2.

∥f∥2 = ⟨f |f⟩ = ⟨x − g|f⟩ = ⟨x|f⟩ − ⟨g|f⟩ = 0 − 0 = 0

Donc f = 0, donc x = g ∈ G.

• Montrons que F = (F ⊥)⊥. On montre l’inclusion F ⊂ (F ⊥)⊥ (fait en (∗) ci-dessus).
Réciproquement, soit x ∈ (F ⊥)⊥.
On décompose x dans la somme directe F

⊥
⊕F ⊥ = E : x = f +g (décomposition établie grâce au fait que F est de dimension

finie). On veut montrer que g = 0. D’où l’idée de calculer ∥g∥2.

∥g∥2 = ⟨x − f |g⟩ = ⟨x|g⟩ − ⟨f |g⟩ = 0 − 0

Donc g = 0 et x ∈ F .
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