Révisions — Espaces préhilbertiens réels

Les attentes

1. Savoir démontrer qu’une appication est un produit scalaire.

2. Connaitre les produits scalaires canoniques sur R" et sur M, ,(R).
Connaitre un produit scalaire sur C°([a, b], R).

3. Inégalité de Cauchy-Schwarz et cas d’égalité.

e~

Identités remarquables et formule de polarisation (comment obtenir
le produit scalaire connaissant la norme 7).

. Orthogonal d’une partie.
. En dimension finie, dimension de F'*.
. Familles orthogonales, orthonormales. Liberté.

. Théoreme de Pythagore.

© oo N O ot

. Expression des coordonnées, du produit scalaire et de la norme dans
une base orthonormée.

10. Expression du projeté orthogonal d’un vecteur « dans une base or-
thonormée de F.

11. Théoreme de distance & un sous-espace vectoriel dans un euclidien.

1. Algorithme d’orthonormalisation de Gram-Schmidt.
. Théoreme de la base orthonormée incompleéte.

3. En dimension finie, projeté orthogonal d’un vecteur sur I’hyperplan
Vect(u)t; distance de x a Vect(u) (savoir effectuer efficacement
les calculs).

Dans ce chapitre, E est un R-espace vectoriel.
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1 Produit scalaire

1.1 présentation et premiers exemples

—[ Définition 1 }

Un produit scalaire est une forme bilinéaire symétrique, définie positive.
Une application ¢ est un produit scalaire sur E si elle vérifie :

1. p: B> - R

2. ¢ est bilinéaire

3. Y(z,y) € B, p(z,y) = p(y, )
4. Ve e E, ¢(x,x)=0

5. ¢(z,x) = 0 implique z = 0.

Il suffit de vérifier la linéarité a gauche et la symétrie pour justifier la bilinéarité.
Un produit scalaire est noté (.,.) ou (.|.), ou (.].).
On appelle norme euclidienne ’application, qui est en fait une norme sur E, définie par

2] = v/ (@lz).

Remarques :

— Dire qu’un produit scalaire est une forme bilinéaire positive ne signifie pas qu’'un produit scalaire
est a valeurs positives, mais que pour tout vecteur z, (z|z) > 0.

— Pour tout z de E, on a (x|0g) = 0 et en particulier (0g|0g) = 0.

— Pour (v;)1<i<r et (wj)1<j<s familles de vecteurs de E et (X\;)i<i<r €t (1j)1<j<s familles de réels, on

(S he] S ) = 3 sl
i=1 j=1

i=1j=1

1 T
— Pour x vecteur non nul, le vecteur Wm, qu’on écrit le plus souvent W, est de norme 1. Quand
x x

on divise un vecteur v non nul par sa norme, on dit qu’on a normé le vecteur v.

—[ Définition 2 }

On appelle espace préhilbertien réel tout R-espace vectoriel muni d’un produit scalaire.
Un espace préhilbertien réel de dimension finie est appelé espace euclidien.

Exercice 1 : Soit a € R et E = R,,[X]. Montrer que I'application ¢ définie sur E? par

e(P,Q) = Z PR (0)Q™ (a) est un produit scalaire sur E.
k=0

1.2 exemples a maitriser

1. Espace euclidien R muni du produit scalaire canonique
Pour n entier naturel non nul, le produit scalaire canonique sur R" est donné par :

n
pour tous & = (1,%2,...,%n) et ¥y = (Y1, ¥2,-..,yn) de R, (zly) = 2y = XY
i=1
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ou X = } et Y =

2. Espace euclidien M,, (]R muni du produit scalaire Tr(A" B)
Pour A et B dans M,(R), Tr(AT B) =

et M,,(R) muni de ce produit scalaire est un espace euclidien.

3. Un produit scalaire intégral dans C([a, b],R)
b

(C([a,b],R), (.].)) est un espace préhilbertien réel, ou  (f|g) = /f(t)g(t) dt.

a

4. Un produit scalaire intégral dans R[X]
1
(R[X], (.|.)) est un espace préhilbertien réel, ou  (P|Q) = /P
0

Il y a de nombreux produits scalaires sur R[X]!

1.3 propriétés

,_' Propriété 1 !

Pour z et y vecteurs de F, on a :

o Identités remarquables :

le +yl* = llzl? + lyll* + 2(zly)
lz = yl? = lal® + llyl* - 2(zly)
o> = llgll* = (= +ylz—y)

e Formules de polarisation associées :

(I + gl = 121 = lly11?)

N |

(zly) =

_ 1 2 2
(ely) = 5 (lle + 9l = 1= = ]”)
¢ Regle du parallélogramme :

lz +ylI? + llz = ylI* = 2l|=]|* + 2[ly]”
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Un peu de géométrie :

— La regle du parallélogramme dit que la somme
des carrés des longueurs des quatre cétés d’'un
parallélogramme est égale a la somme des car-
rés des longueurs de ses deux diagonales.

— Si z et y sont de méme norme, alors = + y et
x — y sont orthogonaux. Géométriquement, les
diagonales d’un losange sont perpendiculaires.

,_[ Propriété 2 — Théoréme de Pythagore }

|z + yH2 = H33H2 + Hy||2 si et seulement si  (x|y) =0

,_[ Propriété 3 — Inégalité de Cauchy-Schwarz }

Pour tous vecteurs z et y de E, ona:  [{(z|y)| < ||z|.||y]

Il y a égalité dans l'inégalité de Cauchy-Schwarz si et seulement si la famille (z,y) est liée.

r—[ Corollaire 1 }

Pour tout = (x1,...,2,) € R", tout y = (y1,...,yn) €E R", on a :

n n
<\ Do > w2
i=1 i=1
n 2 n n
i—1 i—1 i—1

Pour f et g fonctions continues sur [a,b], on a :

n
>z
=1
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Exercice 2 (B.E.O.) : Soit E un R-espace vectoriel muni d’un produit scalaire noté (| ).

1. (a) Enoncer et démontrer I'inégalité de Cauchy-Schwarz.
(b) Dans quel cas a-t-on égalité ? Le démontrer.

2. Soit E={f €C([a,b],R), Vz € [a,b] f(x)>0}.
b b 1
Prouver que ’ensemble { / f)dt x / mdt, fekr } admet une borne inférieure m et déter-

miner la valeur de m.

,_[ Propriété 4 — Inégalité triangulaire } \

Pour tous vecteurs x et y de F, on a I'inégalité triangulaire :
lz +yll < llzll + llyll

Il y a égalité si et seulement si x et y sont colinéaires et de méme sens (il existe a > 0 tel que
x = ay ou tel que y = ax).

2 Familles orthogonales, orthonormales

2.1 propriétés des familles orthogonales

,_[ Définition 3 — Notions d’orthogonalité ]

Soient x et y deux vecteurs de E, F = (v;);e; une famille de vecteurs de E,
et I’ et G deux sous-espaces vectoriels de E.

— Vecteurs

x et y sont orthogonaux si (z|y) = 0.

- Famille de vecteurs

F est une famille orthogonale si pour tous i et j de I avec i # j, (v;|vj) = 0.

F est une famille orthonormale (ou orthonormée) si F est une famille orthogonale constituée de
vecteurs de norme 1.

— Ensembles

F et G sont des sous-espaces orthogonaux si tout vecteur de F' est orthogonal a tout vecteur de

G: V(f,9)e FxG, (flg)=0.

,_' Propriété 5 !

Normer les vecteurs d’une famille orthogonale sans vecteur nul, donne une famille orthonormale.

J

Exercice 3 : Vérifier que la base canonique de R™ est orthonormée pour le produit scalaire canonique
de R™. Vérifier que la base canonique de M,, ,(R) est orthonormée pour le produit scalaire canonique de
anp(R)'

N Exercice 4 : On considére I'espace préhilbertien réel E = C([0,27],R) muni du produit scalaire

2m
(fyg) = [ f(t)g(t)dt. Pour n € N, on pose uy, : t — cos(nt).
0

Montrer que la famille (uy,)nen est orthogonale. Donner une famille orthonormale de E.
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,_‘ Propriété 6 !

Toute famille orthogonale ne contenant pas le vecteur nul est libre.
Toute famille orthonormale est libre.

Soit (v1,v2,...,vp) une famille orthogonale de E. On a le théoreme de Pythagore généralisé :

[v1 4+ v2 + -+ vp||2 = [Jor]|2+ [Jo2]2+ -+ - + o]

2.2 bases orthonormales dans un espace euclidien

,_[ Propriété 7 — Ecriture d’un vecteur dans une base orthonormée

Soit (e1, €9, ..., e,) une base orthonormée de E. Pour tout z de F :

x = (x|e1)er + (x|ea)ea + - - - + (x|en)en

n

x = Z(x\eﬁei

=1

n

lz]]* = > (xle:)?

=1

Exercice 5 :
a € R et E =R,[X]. On reprend le produit scalaire défini sur E? par

(P|Q) = ZP““ )Q%¥)(a)

Pour i € [0,n], P, = (X — a)*.
1. Montrer que (Py, P, ..., P,) est une famille orthogonale de E.
2. En déduire une base orthonormale de E, notée B.

3. Exprimer les coordonnées d’un polynéme P de E dans B a 'aide des dérivées successives de P en
a. Retrouver ainsi la formule de Taylor pour les polynémes.

,_‘ Propriété 8 !

Soit B une base orthonormée de E. On note X et Y les matrices colonnes des coordonnées de x et
y dans B. On a :

(zly) =XTY et z]?=X" X
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,_[ Propriété 9 — procédé d’orthonormalisation ] .

)
Soit (e1,es,...,e,) une famille libre de E. Le procédé d’orthonormalisation de Gram-Schmidt
consiste a définir les vecteurs si, sa, ..., s, comme suit :
el
§1 = ——
el
w i—1
pouri>2, S =-——  oOU U =e— Z(€i|5k>8k
i | =
La famille (s, s2,...,sp) ainsi construite est une famille orthonormale et
Vr e [l,p], ona  Vect(si,so,...,s,) = Vect(er,ea,...,e;)

Si 'on recherche une famille orthogonale, pas forcément orthonormale, il faut quand méme appliquer de
la méme facon le procédé de Schmidt.

Exercice 6 : Orthonormaliser la famille (1, X, X?) pour le produit scalaire (P|Q) = [ P(t)Q(t) dt.

O — =

—[ Théoréeme 1 }

Tout espace euclidien possede une base orthonormée.
Toute famille orthonormée d’un espace euclidien E peut étre complétée en base orthonormée de
E.

Exercice 7 : Soit E un espace vectoriel euclidien de dimension n > 2. Soit (a, b) une famille orthonormale
de E. On considére 'endomorphisme f de E donné par :

flz) = <x7a>b_ <x7b>a

Ecrire la matrice M de f dans une base « la mieux choisie possible » de E.

3 Orthogonal d’une partie

,_[ Définition - propriété 1 ]

Soit A une partie de E. L’orthogonal de A, noté AL, est 'ensemble des vecteurs de E qui sont
orthogonaux a tous les vecteurs de A.

At ={z e E|Vy € A, (z]y) =0}

C’est un sous-espace vectoriel de E. On a: A+ = (Vect(A))*+.

Exercice 8 :

1. Reconnaitre 1'orthogonal d'un espace pour D = {(x,y) € R?, 2z — Ty = 0}. Dans le plan, quel est
un vecteur normal 77 de la droite d’équation —7y + 2x =07

2. Reconnaitre I'orthogonal d'un espace pour P = {(z,y,2) € R?, 2 +y — z = 0}. Dans I'espace, quel
est un vecteur normal 77 du plan d’équation x +y — 2 =07
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Remarque : soit F' = Vect(f1, f2, ..., fp). Pour montrer qu'un vecteur = est orthogonal a tout vecteur de
F, il suffit de montrer que x est orthogonal & tout vecteur d’une famille génératrice de F.

zeFt & Vie[lp], (|fi) =0

Par exemple, complétons les équivalences suivantes.

Pe(Vect(X"—1, X3 X"+ X?)t & {

f e (Vect(z — sinz, x — cosz))t < {

,_[ Propriété 10 }
{OE}J‘ =F et EJ‘ = {OE}
Le vecteur nul est le seul vecteur orthogonal a tous les vecteurs de F.

A F et G sont orthogonaux < FC G+ < F 1 G < Gc Ft
Il n’y a pas forcément égalité.

,_[ Propriété 11 } -
Soit E' un espace préhilbertien réel (de dimension finie ou non) et F' un sous-espace vectoriel de
dimension finie de F.

o F est un supplémentaire de F orthogonal & F, et c¢’est méme le seul. On Pappelle supplé-
mentaire orthogonal de F.

1
FeFt=E
¢« Ona (FHt =F.

Exercice 9 :
1. Donner un supplémentaire de D = Vect ((1,1)) dans R?. Nous commenterons.
2. Donner l'orthogonal de {(z,y,2) € R?, 22 — 3y + z = 0}.
3. Donner l'orthogonal dans M,,(R) de ker Tr.
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4 Projection orthogonale sur un sous-espace de dimension finie

r—[ Définition 4 }
On suppose que F est un sous-espace vectoriel de F pour lequel F @ F+ = E.
On appelle projection orthogonale sur F, la projection sur F parallelement a F*.

ajpr(IE) :pFL(.T) ................................. z

R ) D I

Propriété 12 — Caractérisation de pp(x)

T eF
pr(x) est caractérisé par : pr(@) N
x—pr(zr) €F
En écrivant ces deux conditions, on obtient des équations qui nous permettront de trouver

pr(x).

Exercice 10 : En s’aidant, pour comprendre, d’un schéma, montrer que pour tout z € E, on a
lpr () < |-

,_' Propriété 13 — Expression de pp(x) dans une base orthonormée de F'

On considere la projection orthogonale sur F', notée pp.
Soit (v1,v2,...vp) une base orthonormale de F'. On insiste sur le fait que p = dim F. Pour tout x

de F, on a :
P

pr(z) = (a|vi)v;

i=1

4.1 distance a un sous-espace de dimension finie

La distance de = a l’ensemble A est d(z, A) = igﬁl |z — all.
a
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—[ Théoréme 2 }

Soit F' un sous-espace vectoriel de dimension finie de F et x € E. La distance de x a F est atteinte
en pr(x), ot pr désigne la projection orthogonale sur F'. Autrement dit,

d(z,F) = ||z — pr(2)||

De plus, pr(z) est I'unique vecteur y de F' tel que d(z, F) = ||z — y||.

1 T — pr(T)

F

4.2 cas particulier des hyperplans

Soit E un espace euclidien de dimension non nulle et H un hyperplan de E.
Il existe un vecteur non nul n de E tel que H = (Vect(n))+. Un tel vecteur n est un vecteur normal &
I’hyperplan H.

o Le projeté orthogonal de x sur Vect(n) est

HJ_

€T e Le projeté orthogonal de x sur H est

e La distance de z & H est
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Exercice 11 (oral Mines-Télécom 2023) : Soit n € N*. On note S, (R) ’ensemble des matrices symétriques
de M, (R) et A,(R) = {M € M, (R) | MT = —M} I'ensemble des matrices antisymétriques.

1. Montrer que A,(R) et S,,(R) sont supplémentaires dans M, (R).
0 2 1
2. Montrer que S,(R) = A,(R)*. On note M = 2 0 1
-1 -1 0

3. Calculer la distance de M a S3(R).
Soit H = {M € M, (R) | tr(M) = 0}.
4. Montrer que H est un espace vectoriel de dimension finie & déterminer.
5. On note J la matrice de M,,(R) dont tous les coefficients sont 1. Calculer la distance de J a H.
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5 Annexe : quelques éléments de démonstrations

Inégalité de Cauchy-Schwarz en page 4

Soient z et y deux vecteurs de E. On introduit :

P(t) Itz +y||> = (tx + yltz + y)

2 el® + [lyl* + 2t(ely)

P est un polynome; il est du second degré si et seulement si z # 0.

PREMIER CAS : x # 0
On a P(t) > 0 pour tout ¢, donc P est de signe constant, donc A < 0.
Donc 4 (<x|y>2 — HxH2||yH2) < 0 et donc

[ o)l < [l flyll

De plus :

il y a égalité dans cette égalité si et seulement si A=0

si et seulement si il existe to € R tel que |tox + y||> = P(to) = 0

on sait que P a 0 ou 1 racine

si et seulement si il existe to € R tel que tox +y =0

DEUXIEME CAS : £ =0
On a I'égalité : [(z|y)| =0 = ||zl [ly[-

En conclusion, on a toujours I'inégalité de Cauchy-Schwarz. Et on a égalité si et seulement si z est nul, ou (z # 0 et (z,y) est liée),
donc en résumé on a bien égalité si et seulement si (z,y) est liée.

Inégalité triangulaire en page 5
On a :
(lzll + gD = llz + 9l = Mzl + lyll* + 2lelllyl = (lz1® + lyll* + 2(zly))

= 2([lzllllyll = (=[y))
0 par l'inégalité de Cauchy-Schwarz

|z + vl

VWV

donc [z + [ly|

o S’il y a égalité dans 'inégalité triangulaire, alors (x,y) = ||z||||y||, et par le cas d’égalité de Cauchy-Schwarz, (z,y) est liée.
Soit = 0 (et = = 0y), soit = # 0 et il existe a réel tel que y = ax. Auquel cas, ||z +y| = ||z|| + ||y|| fournit |1+ a| =1+ |al.
Le cas a < —1 est exclu car il conduit 8a—1=1—-a (a=1). Lecas —1 <a < 0est exclucaril conduita 1+a=1—-a
soit @ = 0. Donc a € RT.

S’il y a égalité dans I’inégalité triangulaire, alors il existe a € RT tel que y = ax.

« Réciproquement, s’il existe a € RT tel que y = azx, alors

lz+yll =1 +alllzll = (1 + a)|lz]| = l|z[| + [laz| = [l=]| + [[y]

Propriété 6 en page 6

Soit (v1,...,vp) une famille orthogonale de vecteurs de E ne contenant pas le vecteur nul. Montrons que cette famille
est libre.
Soient au, ..., ap des scalaires tels que aqv1 + apv2 + - -+ + apvp = 0. En particulier, pour i € [1,p] :

(a1v1 + a2 4 -+ apuplvi) = (Op|vi) =0

par linéarité a gauche :
o (vifvi) + az(va|vi) + -+ ap(vplvi) = 0
et comme la famille de vecteurs est orthogonale :
0+ +0+aifvilv;) +0+---+0 = 0

aillvil> = 0

Enfin, comme aucun des vecteurs n’est nul, ||v;|| # 0, et donc a; = 0.

La famille (v1,...,vp) est libre.

Une famille orthonormale est en particulier une famille orthogonale qui ne contient pas le vecteur nul (tous ses vecteurs sont

de norme 1, donc non nuls). Par ce qui précede, une famille orthonormale est donc libre.
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Généralisation du théoréme de Pythagore en page 6
Soit (v1,v2,...,vp) une famille orthogonale de vecteurs de E. Par bilinéarité du produit scalaire au passage (*) :

o +va 4+ vl = (widvat-Fvplvr+va+oe+vp)

P P P P
- (Leise)m S
i=1 Jj=1 i=1 j=1
comme la famille est orthogonale, pour ¢ # j, (vi|v;) =0
p p
= D O+ 0wl + 04 +0) =D il
i=1

=1

Définition-propriété 1 en page 7

En relisant la définition de AL, on a A+ C E (1).

De plus, pour tout vecteur y de A, on a (0g|y) = 0 (c’est une propriété du vecteur Og). Donc 0 € A* (2).
Soient (z,z’) € (A1)? et (\, u) € R,

Pour tout y € A, on a :

Dz +pa'ly) = Ax|y) + pi2’|y) (bilinéarité du produit scalaire)

= A0+ 4.0 car x et &’ sont orthogonaux a tous les y de A
0

Ainsi Az 4+ pa’ est orthogonal & tous les vecteurs de A, autrement dit appartient 4 AL,
V(z,z') € (A1), Y(\, 1) € R% Az + pa’ € A+ (3).

Propriété 7
n

Soit (e1,...,€2,...,en) une base orthonormée de E. Soit © € E. x s'écrit Z Ti€;.
i=1

Pour k € [1,n], on a :

(zlex) = (x1e1+---+ Tnenler)
par linéarité a gauche du produit scalaire :

= xzi{eilex) + wa(ezler) + - - + zn(enler)

et comme la famille (eq, e2,...,ey) est orthonormale :
= 1.0+ - -+ 0+ 2.l +251.0+ - +2,.0
Tk
Les coordonnées de x dans la base (e1, e, ..., e,) sont données par z, = (z|ex).

Avec ces notations, on a aussi par bilinéarité du produit scalaire :

n n n n n n
[l <Z Tie; Zl’j@j> =D ) wmasledes) =Y m > wsledes)
i=1 j=1 i=1 Jj=1

i=1 j=1
et comme la famille (e1,e2,...,e,) est orthonormale :

= > 20+ +0+z 140+ +0)
=1

n

Yoai o= ) (ale)”

=1

Propriété 8 en page 6
Soit B = (e1,...,en) une base orthonormée de E. On note X et Y les matrices colonnes des coordonnées de x et y dans B.
Ona:

T1
Z2
X=1. ol x = x1e1 + x2e2 + -+ Tnen

Tn

Y1

Y2
y=1 . ol y = yie1 +y2e2 + -+ Ynén

Yn
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aly) = (D we

Y1
n
Y2
= chiyi:(ml T ... wn) . =X'Yy
i=1 :
Yn
Procédé de Schmidt en page 7
Soit (e1, ez, ..., ep) une famille libre de E. On définit les vecteurs (s;)1<i<p par
s o
1=
[[ex]]
i—1
. Uj N
pouri > 2, s; = ol u; =e; — Z(ei|5k>sk
] 2
Pour n € [[1, p], on nomme P, la propriété :
« (s1,82,...,8n) est une famille orthonormale et pour r < n, Vect < s1,82,...,8 > = Vect < e1,e2,...,er > »

et on la démontre par récurrence finie.

e 51 est un vecteur de norme 1 et on a
Vect < s1 > = Vect < v1 >. P1 est vraie.

e supposons P, vraie pour un certain entier n compris entre 1 et p — 1.
n

On rappelle que unt1 = €nt1 — Z (ei|sk)sk.

k=1
D’aprés Py, on a Vect < s1,82,...,8, > = Vect < e1,ea,...,e, >. Comme (€;)1<i<p est libre, e 41 n’est pas combinaison
linéaire de ey, ea, . . .iLen, donc e, 41 n’est pas combinaison linéaire de s1, s2,. .., $p et donc up4+1 # 0. Cela a bien un sens de
12 n+1
considérer sp4+1 = || H , et ce vecteur est de norme 1.
Un+1

Pour k € [1,n], on a (par linéarité a droite) :

3

(en+ilsk) = > (entals;)(sjlsk)
j=1
(ent1|sk) = (0+04---+0+ (ent1|sk). 1 +0+0+---40)
car (8;)1<i<n €st orthonormale, par P,
0

Un+1
(sntalsk) = ( ——lsk
" lluntall

L unals) =
= 1|8k) = :
Tamea] Tamea]

= 0

(uny1|sk)

On sait déja que la famille (s;)1<i<n est orthonormale; on obtient 1a : la famille (s;)1<i<n+1 est orthonormale.

De plus, par hypothése de récurrence, Vect < s1,s2,...,8, > = Vect < e1,ez,...,e, >, et par définition de s,+1, Snt+1 est
combinaison linéaire de en+1, S1, S2, . . ., Sn, donc

Vect < s1,82,...,5n41 > C Vect < e1,e2,...,eny1 >.

Enfin, (s1, $2,..., Sn+1) est une famille orthonormale donc c’est une famille libre.

On a donc dim (Vect < s1,82,...,8n41 >) =n+ 1.

Par ailleurs, (e1, €2, . .., ent1) est libre (sous-famille de la famille libre (e;)1<i<p), donc dim (Vect < e, e2,...,€nt1 >) = n+1.
On a une inclusion et égalité des dimensions donc Vect < s1,82,...,8n4+1 > = Vect < e1,€2,...,€nt1 >.

Pr+1 est vraie, ce qui achéve la récurrence.
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Théoréme 1 en page 7

e Comme E est un espace vectoriel de dimension finie, il existe une base (e1,e2,...,e,) de E. C’est une famille libre de
E. Par le procédé d’orthonormalisation de Schmidt, il existe une famille orthonormale (w1, ws,...,wy) de E. Toute famille
orthonormale est libre donc (w1, w2, ..., ws,) est une famille libre de FE.

Comme F est de dimension n, cette famille libre a n vecteurs est une base de F.
Autre rédaction : dans le procédé de Schmidt, pour tout r € [1,n], on a

Vect (w1, wa, ..., w,) = Vect(er, ez, ...,er).
En particulier, Vect(w1, w2, ..., wn) = Vect(e1,ez,...,en) = E. La famille (w1, w2, ..., ws,) est donc une famille génératrice
de E.

En conclusion, il existe une base orthonormée de FE.

e Soit (e1,e2,...,ep) une famille orthonormée de E. C’est une famille libre de E. Par le théoréme de la base incom-
plete, on peut compléter cette famille en base (e1,ez,...,€p,ept1,...,6n) de E. Par le procédé d’orthonormalisation de
Schmidt, il existe une base (w1, w2, ..., ws) de E. En relisant la construction des vecteurs dans le procédé de Schmidt :
€1
w) = ——
[lex]]
i1
. Uj N
pour i > 2, w; = m ol u; = e; — E (ei|wg )wg,
’ k=1
on s’apercoit que (e1,ea, ..., ep), déja orthonormée, n’est pas modifiée par le procédé, c’est-a-dire que
w1 = €1, W2 =€2, ...,Wp = €p.
On trouve donc : (e1,€2,...,€p, Wp+1,-..,Ws,) est une famille orthonormée de E, et comme expliqué au premier point, c’est
) ) s €py Wp+1, ) ) 5

une base de E.
En conclusion, toute famille orthonormée de E peut étre complétée en base orthonormée de FE.

Propriété 11
Remarquons que si F' = {0}, on a F* = E et {0} ® E = E, donc F @ F* = E. De méme si F = E, car alors F+ = {0}.
Dans la suite, on suppose que F' n’est pas réduit & {0}.

e CAS OU F EST DE DIMENSION FINIE. (ce n’est pas nécessaire de distinguer ce cas, son seul mérite est de donner concréte-
ment F1).

Nous considérons F' un sous-espace vectoriel de ¥ de dimension p comprise entre 1 et n — 1, ou n = dim F. Il existe une
base orthonormée (b1,bz,...,bp) de F, qu’on compléte en (b1, be,...,by) base orthonormée de E.

Montrons que F+ = Vect(bpi1,bpr2,...,bn).

Soit © = inbi un vecteur de E. On a :

=1

reFt o Vje[l,p], (z|b)=0

& Ve [[17]7]], szbz bj =0

=1

& Ve [1,p], Zx, (b;|bj) = 0 par linéarité a gauche
i=1
& Vjelp], 0404+ -+0+2;.14+0+0+---4+0=0 car la famille (b;) est orthonormale

n

& = Z Tib;

i=p+1

donc F* = Vect(bpr1,bpia,-..,bn).
Comme la famille (b;)p+1<i<n est orthonormale, elle est libre, et c’est donc une base de F*.
Donc dim F* = n — p et donc dim F + dim F*+ = n.

o On a montré que dim F 4+ dim F = dim E et vérifie facilement que N F+ = {0}. Par propriété, F & Ft=E.

« Par le premier point, dim(F+)* = dim E — dim F* = dim F. Montrons que F C (F*)* pour obtenir (F*+)* = F.
Soit 2 € F; soit y € F. On a (z|y) = 0. Donc z est orthogonal & tous les vecteurs de F'*, soit x € (F1)* (x).

F C (F+)* puis F = (FH)*.

CAS GENERAL
« On vérifie facilement que F'N F* = {0}. Montrons que E C F + F*. Soit une base orthonormée (b1, b, ...,b,) de F.
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Soit x € E. On remarque que

P P
z= (@lbi)bi+z— Y (zlbi)bs
i=1 =1
——
€F ert

Donc z € F + F+.
Ainsi E=F & F+.

o Montrons que F~* est le seul supplémentaire de F dans E orthogonal & F. Soit G un tel supplémentaire.

1
De G L F, on déduit G C F*. Réciproquement, soit € F*. On décompose  dans la somme directe FGG =F :z = f+g.
Comme on veut montrer que f est nul, une idée est de calculer ||f|>.

112 = (f1F) = (z = glf) = &|f) = (glf) =0—-0=0
Donc f =0, donc z =g € G.

« Montrons que F = (F+)*. On montre Vinclusion F' C (F*)* (fait en () ci-dessus).
Réciproquement, soit = € (FJ')J'.

1
On décompose x dans la somme directe F@FLt =E:z = f+g (décomposition établie grace au fait que F' est de dimension
finie). On veut montrer que g = 0. D’ott I'idée de calculer ||g]|?.

lgll* = (z — flg) = (zlg) — (flg) =0—0

Doncg=0et z € F.
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