
Moments d’une variable aléatoire discrète

Les attentes

1. Pour une variable aléatoire à valeurs dans N ∪ {+∞}, formule de
l’espérance par antirépartition.

2. Existence, et calcul le cas échéant, de l’espérance d’une variable
aléatoire complexe X. On note : X ∈ L1.

3. Formule de transfert.
4. Théorème d’existence d’une espérance par domination.
5. Si X et Y sont dans L1 et indépendantes, alors XY est dans L1 et :

E(XY ) = E(X) E(Y ).
6. Si E(X2) < +∞, on note : X ∈ L2. Auquel cas, X est d’espérance

finie.
7. Savoir définir la variance de X. Formule de Koenig-Huygens.
8. Connaître les espérance et variance des lois de référence.
9. Savoir définir la covariance de X et Y , et donner la relation de

Huygens.

10. Formules pour E(aX + b), V (aX + b), E(
n∑

i=1
λiXi), V (X + Y ),

V (
n∑

i=1
Xi) avec les Xi indépendantes.

11. Savoir définir la fonction génératrice de X variable aléatoire à va-
leurs dans N. Savoir calculer GX pour les lois de référence.

12. Détermination de la loi de X à l’aide de GX .

1. Inégalité de Cauchy-Schwarz et cas d’égalité.
2. Quelle est la variable aléatoire centrée et réduite déduite de X ?
3. Inégalité de Markov, inégalité de Bienaymé-Tchebichev, loi faible

des grands nombres.
4. Savoir utiliser GX pour calculer E(X) et V (X). À quelle condition

nécessaire et suffisante sur GX , X est-elle d’espérance finie ?
5. Fonction génératrice d’une somme de variables aléatoires indépen-

dantes.

Dans ce chapitre, toutes les variables aléatoires sont discrètes et définies sur un espace probabilisé
(Ω, A, P ). Elles sont à valeurs dans C, R ou N selon les paragraphes.

1 Famille sommable

La famille (ui)i∈I est sommable lorsque
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2 Espérance d’une variable aléatoire réelle ou complexe

2.1 existence et calcul

En MPSI, on définit l’espérance d’une variable aléatoire réelle X à support fini comme la moyenne des
valeurs prises par X, pondérées par leur probabilité d’apparition :

E(X) =
∑

x∈X(Ω)
xP (X = x)

L’espérance s’interprète naturellement dans les jeux de hasard comme le gain espéré, d’où l’appellation.

Par exemple, pour X de loi présentée dans le tableau ci-contre,

E(X) =

valeur k du gain X −1 1000

P (X = k) 999
1000

1
1000

Exercice 1 : Une urne contient n boules numérotées de 1 à n. On tire une boule dans cette urne et
on relève son numéro. Soit X la variable aléatoire égale au numéro relevé. Donner l’espérance de X.

Définition 1 – Espérance – cas positif

Quand X est une variable aléatoire réelle positive, on définit son espérance dans [0, +∞] par :

E(X) =
∑

x∈X(Ω)
xP (X = x)

Définition 2 – Espérance – cas sommable

Soit X est une variable aléatoire à valeurs dans C. On dit que X est d’espérance finie, ou encore
que X admet une espérance, lorsque la famille (xP (X = x))x∈X(Ω) est sommable. Dans ce cas,
l’espérance de X est :

E(X) =
∑

x∈X(Ω)
xP (X = x)

et on note X ∈ L1.

Remarques :
— L’espérance de X ne dépend que de la loi de X. On peut parler de l’espérance d’une loi.
— On remarque que X est d’espérance finie si et seulement si |X| est d’espérance finie.
— Toute variable aléatoire finie, c’est-à-dire telle que X(Ω) est un ensemble fini, est d’espérance finie.
— Lorsque X(Ω) est dénombrable, on peut écrire X(Ω) = {xn, n ∈ N}. X est d’espérance finie si, et

seulement si, la série ∑
xnP (X = xn) converge absolument. Dans ce cas,

E(X) =
+∞∑
n=0

xnP (X = xn)

et cette quantité est (heureusement !) indépendante de la numérotation choisie pour les valeurs
prises par X.

— Une variable aléatoire d’espérance nulle est dite centrée.
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Propriété 1

Toute variable aléatoire bornée est d’espérance finie.

Nous généraliserons ce résultat avec le « théorème d’existence d’une espérance par domination ».

Propriété 2 – lois usuelles ♡

• On rappelle que l’espérance de la loi binomiale B(n, p) est np, et l’espérance de 1A est P (A).
• X de loi géométrique de paramètre p est d’espérance finie égale à 1

p .
• X de loi de Poisson de paramètre λ est d’espérance finie égale à λ.

Nous considérons souvent des transformées de la ou des variables initiales (X2, etX , Xk, XY 2, min(X, Y ),...).
Le théorème qui suit est fondamental : il permet d’étudier les espérances de ces transformées sans cher-
cher les lois de ces transformées. Il agit comme un transfert de la loi de X vers les espérances de ces
transformées.

Théorème 1 – formule de transfert – admis

Soit f : X(Ω) → C. La variable aléatoire f(X) est d’espérance finie si, et seulement si, la famille
(f(x)P (X = x))x∈X(Ω) est sommable. On a alors :

E(f(X)) =
∑

x∈X(Ω)
f(x)P (X = x)

Le plus souvent, X(Ω) ⊂ C. Mais on peut aussi choisir de considérer deux variables discrètes complexes
(X1, X2) et X = (X1, X2). À ce moment-là, X(Ω) ⊂ C2, et la formule de transfert devient :

E(f(X1, X2)) =
∑

(x1,x2)∈(X1,X2)(Ω)
f(x1, x2)P (X1 = x1, X2 = x2) (sous réserve de sommabilité)

Exercice 2 : Soit X de loi de Poisson de paramètre λ et t réel. Montrer que Y = eitX est d’espérance
finie et calculer son espérance.

Exercice 3 : Calculer E( 1
X ) pour X suivant une loi géométrique de paramètre p.

Propriété 3 – calcul de l’espérance par antirépartition

Ici, on suppose que X est à valeurs dans N ∪ {+∞}.

E(X) =
+∞∑
n=0

P (X > n) =
+∞∑
n=1

P (X ⩾ n)

Exercice 4 : Retrouver, avec cette formule d’antirépartition, l’espérance de X, variable aléatoire suivant
une loi géométrique de paramètre p.
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2.2 propriétés de l’espérance

Théorème 2 – théorème de domination

Si X et Y sont deux variables aléatoires vérifiant 0 ⩽ |X| ⩽ Y . Si Y est d’espérance finie, alors X
est aussi d’espérance finie.

Propriété 4

Dans cette propriété, X et Y sont deux variables aléatoires discrètes à valeurs dans R ou C (en
fonction de ce qui a du sens !).
Linéarité de l’espérance : Soient X et Y deux variables aléatoires d’espérance finie.

Pour λ, µ ∈ C, la variable aléatoire λX + µY est d’espérance finie et on a :

E(λX + µY ) = λE(X) + µE(Y )

Action « centrer » : si X est d’espérance finie, X − E(X) est centrée.
Positivité de l’espérance : si X ⩾ 0, alors E(X) ⩾ 0. De plus,{

X ⩾ 0
E(X) = 0

⇒ (X = 0 presque sûrement)

Croissance de l’espérance : si X et Y sont d’espérance finie et X ⩽ Y , on a E(X) ⩽ E(Y ).
Inégalité triangulaire : X est d’espérance finie si, et seulement si, |X| est d’espérance finie et

dans ce cas, on a
|E(X)| ⩽ E(|X|)

Propriété 5 – linéarité de l’espérance

Soit (X1, . . . , Xn) une famille de variables aléatoires de L1. Toute combinaison linéaire de
X1, . . . , Xn est dans L1 et on a, pour a1, . . . , an scalaires,

E(a1X1 + a2X2 + · · · + anXn) = a1E(X1) + a2E(X2) + · · · + anE(Xn)

E(X1 + X2 + · · · + Xn) = E(X1) + E(X2) + · · · + E(Xn)

Supposons que l’expérience consiste à tirer avec remise des boules dans une urne qui contient des
boules vertes, blanches et rouges. X est la variable aléatoire égale au nombre de tirages à effectuer
pour obtenir au moins une fois chaque couleur.
Après un calcul d’espérance, vous trouvez E(X) = 4

3. Qu’écrivez-vous sur votre copie ?

Exercice 5 : On suppose que X1, X2, . . . , Xn sont des variables aléatoires positives d’espérance finie. Mon-
trer, en utilisant le théorème de domination, que Z = inf(X1, X2, . . . , Xn) et T = sup(X1, X2, . . . , Xn)
sont aussi d’espérance finie.

Exercice 6 : n personnes se rendent dans un cinéma et chacune choisit l’une des trois salles disponibles,
de manière équiprobable. Pour i ∈ J1, 3K, on note :

Xi la variable aléatoire égale au nombre de personnes choisissant la salle numérotée i
Ti = 1(Xi=0)

et on considère la variable aléatoire T égale au nombre de salles vides.
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Écrire T à l’aide de données de l’énoncé et donner alors E(T ). On remarquera qu’on n’a pas du tout
cherché la loi de T pour cela !

Propriété 6

Soient X et Y deux variables aléatoires d’espérance finie et indépendantes. On a

E(XY ) = E(X)E(Y )

Plus généralement, si X1, X2, . . . , Xn sont d’espérance finie et indépendantes, X1X2 . . . Xn est
d’espérance finie et on a :

E (X1X2 . . . Xn) = E (X1) E (X2) . . . E (Xn)

Exercice 7 : On considère une suite de variables aléatoires (Xn)n∈N∗ , toutes définies sur le même espace
probabilisé, mutuellement indépendantes et suivant la loi, dite de Rademacher de paramètre p (avec
0 < p < 1), définie par :

P (Xn = 1) = p et P (Xn = −1) = 1 − p

On considère la variable aléatoire Tn =
n∏

k=1
Xk.

1. Déterminer l’ensemble des valeurs prises par Tn puis calculer E(Tn) et en déduire une relation entre
P (Tn = 1) et P (Tn = −1).

2. En déduire la loi de Tn.

3 Variance d’une variable aléatoire réelle
Dans toute cette partie, on ne considère que des variables aléatoires à valeurs dans R.

3.1 variables aléatoires dont le carré est d’espérance finie

La notation X ∈ L2 signifie que X2 est d’espérance finie. Conformément au programme, on ne
soulèvera aucune difficulté quant à la définition précise de L2.

Propriété 7

Si E
(
X2)

< +∞, alors X est d’espérance finie. Dit autrement,

X ∈ L2 ⇒ X ∈ L1 ou encore L2 ⊂ L1

Propriété 8 – inégalité de Cauchy-Schwarz

Si X et Y sont dans L2, XY est dans L1 et on a :

|E(XY )| ⩽
√

E (X2)
√

E (Y 2)

Il y a égalité si et seulement si X et Y sont proportionnelles presque sûrement.
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3.2 définition et propriétés de la variance

Définition 3

Pour X ∈ L2, on appelle variance de X le réel positif donné par

V(X) = E
(
(X − E(X))2

)
et écart-type de X le réel σ(X) =

√
V(X).

La variance est la « moyenne » du carré de la distance de X à E(X), et mesure donc la dispersion de X
à sa moyenne.

Propriété 9

Soit X ∈ L2.
• Pour a et b réels, aX + b ∈ L2 et on a V(aX + b) = a2V(X).
• V(X) = 0 si et seulement si X est une variable aléatoire presque-sûrement constante.

Propriété 10 – formule de Kœnig-Huygens

V(X) = E(X2) − E(X)2

Une variable aléatoire d’espérance valant 0 et de variance égale à 1 est dite centrée réduite.

Propriété 11

Pour X ∈ L2 de variance non nulle, la variable aléatoire X − E(X)√
V(X)

est une variable aléatoire

centrée et réduite.

Propriété 12 – lois usuelles ♡

• On rappelle que la variance de la loi binomiale B(n, p) est np(1 − p).
• X de loi géométrique de paramètre p est de variance finie égale à 1−p

p2 .
• X de loi de Poisson de paramètre λ est de variance finie égale à λ.

4 Covariance de deux variables aléatoires de L2

Définition - propriété 1

Pour X et Y dans L2, la variable aléatoire (X − E(X))(Y − E(Y )) est d’espérance finie et cette
espérance est la covariance de X et Y :

Cov(X, Y ) = E ((X − E(X))(Y − E(Y )))

Dans la pratique, on peut calculer la covariance de X et Y par la formule de Kœnig-Huygens
suivante :

Cov(X, Y ) = E(XY ) − E(X) E(Y )
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Remarques :
— Pour X ∈ L2, on a Cov(X, X) = V(X).
— L’application (X, Y ) 7→ Cov(X, Y ) est une forme bilinéaire symétrique positive sur L2 (mais pas

définie positive). Par exemple,

Cov(5X + 3Y, Z) =

Cov(X, X + 1) =

— Lorsque Cov(X, Y ) = 0, on dit que X et Y sont décorrélées.
— Si X et Y sont indépendantes, on a vu que E(XY ) = E(X)E(Y ), donc Cov(X, Y ) = 0. Vous avez

vu en MPSI que la réciproque est fausse.�



�
	X et Y sont indépendantes =⇒

��⇐=

�



�
	X et Y sont décorrélées, Cov(X, Y ) = 0

— Une co-variation
Il s’avère que : « Cov(X, Y ) > 0 signifie que X et Y ont tendance à être de même variation », tandis
que « Cov(X, Y ) < 0 signifie que X et Y ont tendance à être de variation opposée ».

Exercice 8 : On effectue une suite infinie de lancers d’une pièce qui amène Pile avec la probabilité p
(p ∈]0, 1[) et Face avec la probabilité q = 1 − p. On dit que la première série est de longueur n (n ⩾ 1) si
les n premiers lancers ont amené le même côté et le (n + 1)e a amené l’autre côté. On note L1 la longueur
de cette série. On définit de même la longueur L2 de la deuxième série.

1. Déterminer la loi de L1 et son espérance.
2. Donner la loi du couple (L1, L2).
3. Donner la loi de L2. Calculer E(L2).
4. On admet que Cov(L1, L2) existe. Calculer Cov(L1, L2).
5. Étudier alors l’indépendance de L1 et L2.

Propriété 13

Soient X et Y dans L2. Alors X + Y est dans L2 et on a :

V(X + Y ) = V(X) + V(Y ) + 2 Cov(X, Y )

Par exemple,

V(X − Y ) =

V(aX + bY ) =
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Propriété 14

Pour toute famille (X1, . . . , Xn) de variables aléatoires de L2, la variable aléatoire X1+X2+· · ·+Xn

est dans L2 et on a :
• Si X1, . . . , Xn sont indépendantes,

V(X1 + X2 + · · · + Xn) = V(X1) + V(X2) + · · · + V(Xn)

• Dans le cas général,

V(X1 + X2 + · · · + Xn) =
∑

(i,j)∈J1,nK2

Cov(Xi, Xj)

V(X1 + X2 + · · · + Xn) =

n∑
k=1

V(Xk) + 2
∑

1⩽i<j⩽n

Cov(Xi, Xj )

Plutôt que de s’emmêler dans la formule, on peut placer les covariances dans la matrice (dite matrice de
variance-covariance) suivante

C =


V(X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X1, X2) V(X2) . . . ...
... . . . . . . Cov(Xn−1, Xn)

Cov(X1, Xn) . . . Cov(Xn−1, Xn) V(Xn)


Dans le cas où les Xk sont deux à deux non corrélées, pour i ̸= j, on a Cov(Xi, Xj) = 0 et la matrice de
variance-covariance de X est diagonale.
La somme de tous les coefficients de cette matrice est la variance de X1 + X2 + · · · + Xn.

Exercice 9 (extrait Mines 2024) : Soit X1, . . . , Xn indépendantes et de même loi, donnée par

P(X1 = −1) = 1
2 = P(X1 = 1)

On pose Sn =
n∑

k=1
Xk. Donner l’espérance et la variance de Sn.

Exercice 10 : Soit (Xn)n⩾1 une suite de variables aléatoires indépendantes suivant toutes la même loi
de Bernoulli de paramètre p ∈]0, 1[. On pose Yn = XnXn+1.

1. Déterminer la loi de Yn.
2. Remplir la matrice de variance-covariance (définie ci-dessus) du vecteur (Y1, Y2, . . . , Yn).
3. En déduire la variance de Z = Y1 + Y2 + · · · + Yn.
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5 Fonctions génératrices
Dans toute cette partie, on ne considère que des variables aléatoires à valeurs dans N.

Définition 4
La fonction génératrice de la variable aléatoire X est la fonction définie par :

GX : t 7→ E(tX) =
+∞∑
n=0

P (X = n)tn

On appelle série génératrice la série entière associée. On note R son rayon de convergence.

— Cette série converge pour t = 1 et GX(1) =
+∞∑
n=0

P (X = n) = 1.
Donc R ⩾ 1.

— Lorsque X est une variable aléatoire finie, GX est une fonction polynomiale et R = +∞.

— Pour tout t ∈ [−1, 1], |tnP (X = n)| ⩽ P (X = n) donc en posant fn : t 7→ tnP (X = n), on a

0 ⩽ ∥fn∥∞, [−1,1] ⩽ P (X = n)

La série ∑
P (X = n) converge, donc la série entière converge normalement, donc uniformément,

sur [−1, 1]. Par transfert de continuité, GX est continue sur [−1, 1].

— GX est de classe C∞ sur (au moins) l’intervalle ouvert ] − 1, 1[ et on peut dériver terme à terme la
somme de la série.

Propriété 15

La loi d’une variable aléatoire X à valeurs dans N est déterminée par GX . Plus précisément, on a :

∀n ∈ N, P (X = n) = G
(n)
X (0)
n!

Deux variables aléatoires à valeurs dans N ont même loi si, et seulement si, elles ont même fonction
génératrice.

SAVOIR-FAIRE
Les étudiants doivent savoir calculer rapidement la fonction génératrice d’une variable aléatoire de
Bernoulli, binomiale, géométrique, de Poisson.
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Propriété 16

Soit une variable X à valeurs dans N.
— X ∈ L1 si, et seulement si, GX est dérivable en 1. On a alors :

E(X) = G′
X(1)

— X ∈ L2 si, et seulement si, GX est deux fois dérivable en 1. On a alors :

E(X(X − 1)) = G′′
X(1)

et il faut savoir en déduire V(X) par la formule de Huygens.

Propriété 17

• Si X et Y sont indépendantes et à valeurs dans N, alors

GX+Y = GX × GY

• Si X1, . . . , Xn sont indépendantes et à valeurs dans N, alors

GX1+X2+···+Xn = GX1 .GX2 . . . GXn

Exercice 11 : Étudier grâce à cette propriété :
1. la loi de la somme de variables aléatoires indépendantes de lois de Poisson P(λ1), . . . , P(λr),
2. la loi de la somme de variables aléatoires indépendantes de lois binomiales B(n1, p), . . . , B(nr, p).

Exercice 12 : On donne, pour tout réel t, GX(t) = ae1+t2 .
1. Donner a.
2. Donner la loi de X.
3. Donner, à l’aide de GX , l’espérance et la variance de X.

6 Inégalités probabilistes et loi faible des grands nombres

6.1 inégalités de concentration

Les inégalités de concentration sont des inégalités qui majorent la probabilité qu’une variable aléatoire
dévie, s’écarte, d’une certaine valeur (en général son espérance).

Théorème 3 – Inégalité de Markov

Soit X une variable aléatoire réelle, à valeurs positives. On a

∀a > 0, P (X ⩾ a) ⩽ E(X)
a

(inégalité dans R+ ∪ {+∞})

Sans l’hypothèse de positivité de X, on pourra écrire :

∀a > 0, P (|X| ⩾ a) ⩽ E(|X|)
a
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Théorème 4 – Inégalité de Bienaymé-Tchebychev

Soit X une variable aléatoire réelle de L2. On a

∀ε > 0, P
(
|X − E(X)| ⩾ ε

)
⩽

V(X)
ε2

Donnons des exemples d’inégalités de concentration qu’on peut obtenir avec l’inégalité de Bienaymé-
Tchebychev.
Soit X d’espérance m et de variance σ2. On applique l’inégalité de Bienaymé-Tchebychev avec ε = aσ
où a > 0. On obtient P (|X − m| ⩾ aσ) ⩽ 1

a2 . En particulier :
— P (|X − m| ⩾ 2σ) ⩽ 1

4 (il y a moins de 25% de chance que X s’écarte de sa moyenne de plus de 2σ)

— P (|X−m| ⩾ 10σ) ⩽ 1
100 (il y a moins de 1% de chance que X s’écarte de sa moyenne de plus de 10σ).

Exercice 13 (oral Mines-Télécom, extrait) : Soient X1, . . . , Xn des variables aléatoires indépendantes qui
suivent toutes la loi uniforme sur {−1, 1}. On pose Sn =

n∑
i=1

Xi.

1. Pour n ∈ N∗ et t > 0, calculer E(etSn).
2. Montrer que pour tout réel t, ch(t) ⩽ exp( t2

2 ).

3. Montrer que pour a > 0, P (Sn ⩾ a) ⩽ e− a2
2n .

6.2 loi faible des grands nombres

Théorème 5 – Loi faible des grands nombres

Soit (Xn)n⩾1 une suite de variables aléatoires indépendantes de même loi et de variance finie. Alors,
pour tout ε > 0,

lim
n→∞

P

(∣∣∣∣Sn

n
− m

∣∣∣∣ ⩾ ε

)
= 0

où Sn =
n∑

k=1
Xk et m = E(X1).

Effectuons une suite d’expériences de Bernoulli indépendantes et notons Xi la variable aléatoire égale à 1 si la iième

expérience donne un succès et valant 0 si c’est un échec.�



�
	X1 + X2 + · · · + Xn est égale au nombre de succès dans les n premières expériences.

La probabilité empirique de succès (ou fréquence de succès) au bout de n expériences est une réalisation de la
variable aléatoire X1+X2+···+Xn

n avec les Xi indépendantes d’espérance p et de variance p(1 − p). La loi faible des
grands nombres traduit l’intuition :�
�

�



la probabilité empirique de succès tend vers la probabilité théorique de succès (p) quand le nombre d’expériences
tend vers l’infini.

En 1906, le statisticien anglais Francis Galton (voulant en fait démontrer l’intelligence des experts) demanda à
787 personnes de deviner le poids d’un boeuf exposé dans une foire. Alors que la plupart des réponses prises indi-
viduellement étaient largement inexactes, la moyenne des estimations fut exacte à 1% près. Cette idée qu’un grand
nombre de personnes peuvent (parfois) donner ensemble une réponse d’expert est le concept de sagesse des foules.
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Nous visualisons, en complétant les légendes, les évolutions de
(

Sn(ω)
n

)
1⩽n⩽500

pour 3 résultats ω, où (Xi)i∈N∗ est
une suite de variables indépendantes et de même loi que X.

X suit la loi de Bernoulli b(0.3) X n’a pas d’espérance
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7 Annexe : quelques éléments de démonstrations
Propriété 1
Supposons que X est bornée. Il existe k réel tel que |X| ⩽ k. On a

0 ⩽ |xP (x = x)| ⩽ MP (X = x)

(On rappelle si besoin que X(Ω) est au plus dénombrable).
La famille (MP (X = x))x∈X(Ω) est sommable (de somme M) donc par comparaison, la famille (xP (X = x))x∈X(Ω) l’est
aussi, et X ∈ L1.

Propriété 2 (loi géométrique, loi de Poisson)
Dans les deux cas, X est à valeurs positives, donc X admet une espérance finie si et seulement si E(X) < +∞.
Commençons par G(p).

E(X) =
+∞∑
k=1

k(1 − p)k−1p

La série entière
∑

xk est de rayon de convergence 1. La fonction somme est dérivable (et même C∞) sur l’intervalle ouvert
de convergence et ses dérivées s’obtiennent par dérivation terme à terme.

∀x ∈] − 1, 1[, f(x) =
+∞∑
k=0

xk = 1
1 − x

∀x ∈] − 1, 1[, f ′(x) =
+∞∑
k=1

kxk−1 = 1
(1 − x)2

et on trouve E(X) = p
(1−(1−p))2 = 1

p
< +∞ donc X ∈ L1.

Poursuivons avec la loi de Poisson P(λ).

E(X) =
+∞∑
k=0

k
e−λλk

k! =
+∞∑
k=1

e−λλk

(k − 1)!

=
+∞∑
j=0

e−λλ.λj

j! = λ < +∞

donc X ∈ L1.

Propriété 3 Nous travaillons ici dans R+ ∪ {+∞}.
+∞∑
n=0

P (X > n) =
+∞∑
n=0

+∞∑
k=n+1

P (X = k)

=
+∞∑
k=1

k−1∑
n=0

P (X = k) par le théorème de Fubini, cas positif

=
+∞∑
k=1

kP (X = k) = E(X)

Théorème 2 (admis)
(Repose sur le théorème de transfert qui a été admis...). On admettra.
On pose Z = (X, Y ) et on note π1 et π2 les applications projections, ce qui donne π2(Z) = Y . Par hypothèse, Y est
d’espérance finie, donc par la formule de transfert, la somme en jeu dans ce qui suit est sommable, et

E(Y ) =
∑

(x,y)∈Z(Ω)

π2(x, y)P (X = x, Y = y) =
∑

(x,y)∈Z(Ω)

yP (X = x, Y = y)

Pour (x, y) ∈ Z(Ω), il existe ω ∈ Ω tel que (x, y) = (X(ω), Y (ω)), ce qui fait que :

0 ⩽ |x|P (X = x, Y = y) ⩽ yP (X = x, Y = y)

Donc
∑

(x,y)∈Z(Ω)
|x|P (X = x, Y = y) est sommable. Donc par le théorème de transfert, π1(X, Y ) est d’espérance finie.

Autrement dit, X est d’espérance finie.
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Propriété 4

linéarité de l’espérance : On l’admet (trop de questions de sommabilité).
La propriété sur la variable centrée s’en déduit.

positivité de l’espérance : si X ⩾ 0, alors E(X) est la somme d’une famille sommable de termes positifs, donc positive.
De plus, E(0) = 0 (somme de termes nuls).

Et si
{

X ⩾ 0
E(X) = 0

alors pour tout x ∈ X(Ω), on a 0 ⩽ xP (X = x) ⩽ E(X) = 0 donc P (X = x) = 0 pour tout x

autre que 0. Enfin,
P (X = 0) = 1 −

∑
x∈X(Ω)\{0}

P (X = x) = 1 − 0 = 1

croissance de l’espérance : si X et Y sont d’espérance finie et X ⩽ Y , alors 0 ⩽ Y − X. Par positivité, 0 ⩽ E(Y − X).
Et par linéarité, 0 ⩽ E(Y ) − E(X). Ainsi E(X) ⩽ E(Y ).

inégalité triangulaire : Admis. Facile pour l’équivalence des espérances finies, puis croissance de l’espérance.

Propriété 6
Par indépendance de X et Y , P (X = x, Y = y) = P (X = x)P (Y = y).
Par la formule de transfert, XY est d’espérance finie si et seulement si la famille (xyP (X = x, Y = y))(x,y)∈X(Ω)×Y (Ω) est
sommable. Or ∑

(x,y)∈X(Ω)×Y (Ω)

|xy|P (X = x, Y = y) =
∑

(x,y)∈X(Ω)×Y (Ω)

|xy|P (X = x)P (Y = y)

= E(|X|)E(|Y |) < +∞

donc XY est d’espérance finie. De plus, en reprenant le même type de calcul,

E(XY ) =
∑

(x,y)∈X(Ω)×Y (Ω)

xyP (X = x, Y = y) =
∑

(x,y)∈X(Ω)×Y (Ω)

xyP (X = x)P (Y = y) = E(X)E(Y )

Propriété 7 et propriété 8 (Cauchy-Schwarz)
Démonstration intéressante.
Soient X et Y dans L1.
On connaît l’inégalité : |ab| ⩽ 1

2 (a2 + b2). Avec le théorème de domination, on en déduit le lemme suivant.

Lemme 1

Si X et Y sont dans L2, la variable XY est dans L1.

Remarque : on peut facilement en déduire que

L2 = {variables aléatoires discrètes réelles sur (Ω, A, P ) telles que X2 soit d’espérance finie}

est un R-espace vectoriel.

On déduit du lemme, avec X et Y = 1, que X ∈ L2 ⇒ X ∈ L1.

• Pour t réel, considérons P (t) = E((tX + Y )2). Puisque (tX + Y )2 = t2X2 + 2tXY + Y 2, il s’agit d’une combinaison
linéaire de variables d’espérance finie (par le lemme), donc bien d’une variable d’espérance finie (par linéarité). Et

P (t) = t2E(X2) + 2tE(XY ) + E(Y 2)

Dans le cas où E(X2) = 0, comme X2 ⩾ 0, X2 est presque sûrement nulle, et donc XY et X sont presque sûrement nulles.
L’inégalité attendue est satisfaite et est même une égalité. Dans le cas où E(X2) ̸= 0, P est un polynôme du second degré
et de signe constant. Son discriminant ∆ est donc négatif ou nul. Or ∆ = 4((E(XY ))2 − E(X2)E(Y 2)), donc on a l’inégalité
cherchée :

(E(XY ))2 ⩽ E(X2)E(Y 2)
• Si X = 0 presque sûrement, on a, on l’a vu, égalité dans l’inégalité précédente.
• Et si E(X2) ̸= 0, on a égalité dans l’inégalité si, et seulement si, ∆ = 0 si, et seulement si, ∃t0 ∈ R tel que P (t0) = 0 si,
et seulement si, ∃t0 ∈ R tel que E((t0X + Y )2) = 0, si, et seulement si, Y = −t0X presque sûrement.
En définitive, il y égalité si, et seulement si, il existe a et b réels tels que P (aX + bY = 0) = 1.
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Propriété 9

• Par linéarité de l’espérance, (aX + b − E(aX + b))2 = a2(X − E(X))2 et on applique à nouveau la linéarité de la
variance.

• Si X est presque sûrement constante, alors il existe m tel que P (X = m) = 1. On a E(X) = m, et donc
P ((X − E(X))2 = 0) = 1 et E(X − E(X))2 = 0.

Si V(X) = 0, alors
{

E(X − E(X))2 = 0
(X − E(X))2 ⩾ 0

donc (X − E(X))2 = 0 presque sûrement.

En notant m = E(X), P (X = m) = 1.

Propriété 12
• Soit X de loi géométrique de paramètre p.

X(X − 1) est à valeurs positives. Par le théorème de transfert, si la quantité suivante est finie, X(X − 1) sera
d’espérance finie.

E(X(X − 1)) =
+∞∑
n=1

n(n − 1)P (X = n) =
+∞∑
n=2

p(1 − p)n(n − 1)(1 − p)n−2

La série entière
∑

xk est de rayon de convergence 1. La fonction somme est dérivable (et même C∞) sur l’intervalle
ouvert de convergence et ses dérivées s’obtiennent par dérivation terme à terme.

∀x ∈] − 1, 1[, f(x) =
+∞∑
k=0

xk = 1
1 − x

∀x ∈] − 1, 1[, f ′(x) =
+∞∑
k=1

kxk−1 = 1
(1 − x)2

∀x ∈] − 1, 1[, f ′′(x) =
+∞∑
k=2

k(k − 1)xk−1 = 2
(1 − x)3

On trouve alors E(X(X − 1)) = p(1 − p) 2
(1−(1−p))3 = 2(1−p)

p2 . On remarque que

X2 = X(X − 1) + X donc par linéarité de l’espérance, E(X2) = 2(1 − p)
p2 + 1

p

On termine avec la formule de Huygens. X est de variance finie égale à 1−p
p2 .

• Soit X de loi de Poisson de paramètre λ. X(X − 1) est à valeurs positives. Par le théorème de transfert, si la quantité
suivante est finie, X(X − 1) sera d’espérance finie.

E(X(X − 1)) =
+∞∑
n=0

n(n − 1)P (X = n) =
+∞∑
n=2

e−λλ2.λn−2

(n − 2)! = e−λλ2eλ

On remarque que
X2 = X(X − 1) + X donc par linéarité de l’espérance, E(X2) = λ2 + λ

On termine avec la formule de Huygens. X est de variance finie égale à λ.

Propriété 13

V(X + Y ) = E
[
(X + Y − E(X + Y ))2]

= E
[
(X − E(X) + Y − E(Y ))2]

= E
[
(X − E(X))2 + (Y − E(Y ))2 + 2(X − E(X))(Y − E(Y ))

]
= V (X) + V (Y ) + 2E [(X − E(X))(Y − E(Y ))]

Théorème 3, inégalité de Markov
On démontre l’inégalité de Markov dans le cadre suivant : variable aléatoire discrète à valeurs dans N. Puis nous donnons
une autre façon de faire pour travailler les variables aléatoires indicatrices d’un événement.

Si E(X) = +∞, on a bien P (X > a) ⩽ 1 ⩽ E(X)
a

pour a > 0.

Dans ce qui suit, X est une variable aléatoire à valeurs positives d’espérance finie ; a est un réel strictement positif.
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Cas où X(Ω) = {i, i ∈ I} avec I ⊂ N
On note J l’ensemble des indices i de I pour lesquels i ⩾ a.

E(X) =
∑
i∈I

iP (X = i) =
∑
i∈J

iP (X = i) +
∑
i∈J

iP (X = i)

Comme X est à valeurs positives, pour tout i ∈ J , on a iP (X = i) ⩾ 0. Par positivité pour la somme de séries convergentes,∑
i∈J

iP (X = i) ⩾ 0.

D’autre part, pour i ∈ J , on a iP (X = i) ⩾ aP (X = i). Par croissance de la somme de séries convergentes,∑
i∈J

iP (X = i) ⩾
∑
i∈J

aP (X = i)

⩾ a
∑
i∈J

P (X = i)

⩾ aP (X ⩾ a)

démonstration avec des variables aléatoires indicatrices
On introduit Y = X 1(X⩾a).
a1(X⩾a) vaut 0 si (X < a) est réalisé, et vaut a si (X ⩾ a) est réalisé. On a donc :

0 ⩽ a1(X⩾a) ⩽ X

Par croissance de l’espérance :

E
(
a1(X⩾a)

)
⩽ E(X)

aE
(
1(X⩾a)

)
⩽ E(X)

aP (X ⩾ a) ⩽ E(X)

Théorème 4, inégalité de Bienaymé-Tchebychev
Soit X ∈ L2. Soit ε > 0.
On pose Y = (X − E(X))2. Y est à valeurs positives et admet une espérance. On applique à Y l’inégalité de Markov avec
a = ε2 :

P (Y ⩾ ε2) ⩽ V(X)
ε2

Enfin, on remarque que (Y ⩾ ε2) = (
√

Y ⩾ |ε|) = (|X − E(X)| ⩾ ε). On a bien :

P (|X − E(X)| ⩾ ε) ⩽ V(X)
ε2

Théorème 5, loi faible des grands nombres
Soit (Xn) une suite de variables aléatoires indépendantes admettant une même espérance finie m et une même variance finie
σ2. Par linéarité de l’espérance :

E(Sn

n
) = 1

n
(E(X1) + E(X2) + · · · + E(Xn))

= 1
n

(nm) = m

Par propriété « V(aZ) = a2V(Z) », puis par propriété pour la variance d’une somme de variables aléatoires indépendantes,
Sn
n

admet une variance et :

V(Sn

n
) = 1

n2 (V(X1 + · · · + Xn))

= 1
n2 (V(X1) + V(X2) + · · · + V(Xn))

= 1
n2 (nσ2) = σ2

n

Soit ε ⩾ 0. D’après l’inégalité de Bienaymé-Tchebychev :

0 ⩽ P (|Sn

n
− m| ⩾ ε) ⩽ σ2

nε2

On a lim
n→+∞

σ2

nε2 = 0. Par le théorème d’encadrement,

lim
n→+∞

P (|Sn

n
− m| ⩾ ε) = 0
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Fonctions génératrices pour les lois usuelles
Les étudiants doivent savoir calculer rapidement la fonction génératrice d’une variable aléatoire de Bernoulli, binomiale,
géométrique, de Poisson.

• Pour X ∼ b(p), GX(t) = P (X = 0) + P (X = 1)t = q + pt pour tout t réel.
• Pour X ∼ B(n, p),

GX(t) =
n∑

k=0

(
n

k

)
pkqn−ktk = (pt + q)n

• Pour X suivant la loi géométrique de paramètre p,

GX(t) =
+∞∑
k=1

pqk−1tk =
+∞∑
j=0

pqjtj+1 = tp
1

1 − tq
= pt

1 − qt

• Pour X suivant la loi de Poisson de paramètre λ,

GX(t) =
+∞∑
k=0

e−λλktk

k! = e−λeλt = eλ(t−1)

Propriété 16
Conformément au programme, on ne montre que le premier sens direct. Soit X d’espérance finie, montrons que GX est
dérivable en 1 et G′

X(1) = E(X).
Soit R le rayon de convergence de

∑
P (X = n)tn. On a R ⩾ 1 et GX est dérivable sur ] − R, R[, donc sur ] − 1, 1[, et

G′
X(t) =

+∞∑
n=1

nP (X = n)tn−1.

• Si R > 1, GX est dérivable en 1 et G′
X(1) = E(X).

• Et si R = 1, comme
∑

nP (X = n) converge, on peut appliquer le théorème d’Abel radial pour obtenir

lim
t→1

G′
X(t) =

+∞∑
n=1

nP (X = n) = E(X).

Par ailleurs, on a vu que GX était continue sur [0, 1]. Par le théorème de la limite de la dérivée, GX est dérivable en 1.

La réciproque est admise, conformément au programme, de même que la réciproque pour le 2è point (que je passe en-
tièrement).

Propriété 17
Soient X1, . . . , Xn indépendantes. Par la propriété de transfert d’indépendance, tX1 , . . . , tXn sont indépendantes. Par pro-
priété pour l’espérance d’un produit de variables aléatoires indépendantes,

E(tX1 tX2 . . . tXn ) = E(tX1 )E(tX2 ) . . . E(tXn )

puis le résultat.
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