Moments d’une variable aléatoire discrete

Les attentes

1. Pour une variable aléatoire a valeurs dans N U {+o0o}, formule de
I’espérance par antirépartition.

2. Existence, et calcul le cas échéant, de l’espérance d’une variable
aléatoire complexe X. On note : X € L.

3. Formule de transfert.
4. Théoreme d’existence d’une espérance par domination.
5. Si X et Y sont dans L' et indépendantes, alors XY est dans L' et :
E(XY)=E(X) E(Y).
6. Si F(X?) < 400, on note : X € L2, Auquel cas, X est d’espérance
(o] finie.

& 7. Savoir définir la variance de X. Formule de Koenig-Huygens.
8. Connaltre les espérance et variance des lois de référence.

9. Savoir définir la covariance de X et Y, et donner la relation de
Huygens.

)

10. Formules pour E(aX + b), V(aX + b), E(3 MiXi), V(X +Y),
=1
V(Y X;) avec les X; indépendantes.
i=1

11. Savoir définir la fonction génératrice de X variable aléatoire a va-
leurs dans N. Savoir calculer G x pour les lois de référence.

12. Détermination de la loi de X a l'aide de G x.

1. Inégalité de Cauchy-Schwarz et cas d’égalité.
2. Quelle est la variable aléatoire centrée et réduite déduite de X ?

&> 3. Inégalité de Markov, inégalité de Bienaymé-Tchebichev, loi faible
des grands nombres.

4. Savoir utiliser G'x pour calculer E(X) et V(X). A quelle condition
nécessaire et suffisante sur Gx, X est-elle d’espérance finie ?

5. Fonction génératrice d'une somme de variables aléatoires indépen-
dantes.

Dans ce chapitre, toutes les variables aléatoires sont discrétes et définies sur un espace probabilisé
(Q, A, P). Elles sont & valeurs dans C, R ou N selon les paragraphes.

1 Famille sommable

I La famille (u;);cs est sommable lorsque
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2 Espérance d’une variable aléatoire réelle ou complexe

2.1 existence et calcul

En MPSI, on définit ’espérance d’une variable aléatoire réelle X a support fini comme la moyenne des
valeurs prises par X, pondérées par leur probabilité d’apparition :

EX)= Y 2P(X=u)
zeX(Q)

L’espérance s’interprete naturellement dans les jeux de hasard comme le gain espéré, d’ou 'appellation.

Par exemple, pour X de loi présentée dans le tableau ci-contre, valeur k du gain X | —1 | 1000
E(X) = P(X = k) 1006 | To00

Exercice 1 : Une urne contient n boules numérotées de 1 a n. On tire une boule dans cette urne et
on releve son numéro. Soit X la variable aléatoire égale au numéro relevé. Donner I'espérance de X.

,_[ Définition 1 — Espérance — cas positif ]

Quand X est une variable aléatoire réelle positive, on définit son espérance dans [0, 00| par :

EX)= > aP(X=2)
z€X(Q)

,_[ Définition 2 — Espérance — cas sommable }

Soit X est une variable aléatoire a valeurs dans C. On dit que X est d’espérance finie, ou encore
que X admet une espérance, lorsque la famille (zP(X = ¥)),ex () est sommable. Dans ce cas,
I’espérance de X est :
EX)= > aP(X=x)
z€X(Q)

et on note X € L1.

Remarques :
— L’espérance de X ne dépend que de la loi de X. On peut parler de I’espérance d’une loi.
— On remarque que X est d’espérance finie si et seulement si |X| est d’espérance finie.
— Toute variable aléatoire finie, c’est-a-dire telle que X (£2) est un ensemble fini, est d’espérance finie.

— Lorsque X () est dénombrable, on peut écrire X (Q) = {z,,,n € N}. X est d’espérance finie si, et
seulement si, la série Y z, P(X = x,) converge absolument. Dans ce cas,

“+oo
E(X) =) 2z,P(X =y)
n=0
et cette quantité est (heureusement!) indépendante de la numérotation choisie pour les valeurs

prises par X.

— Une variable aléatoire d’espérance nulle est dite centrée.
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Propriété 1

Toute variable aléatoire bornée est d’espérance finie.

Nous généraliserons ce résultat avec le « théoréme d’existence d’une espérance par domination ».

,_[ Propriété 2 — lois usuelles © ]

o On rappelle que I'espérance de la loi binomiale B(n, p) est np, et 'espérance de 14 est P(A).
e X de loi géométrique de parametre p est d’espérance finie égale a %.

e X de loi de Poisson de parametre A est d’espérance finie égale a .

Nous considérons souvent des transformées de la ou des variables initiales (X2, e!*, X*, XY?2 min(X,Y),...).
Le théoréeme qui suit est fondamental : il permet d’étudier les espérances de ces transformées sans cher-
cher les lois de ces transformées. Il agit comme un transfert de la loi de X vers les espérances de ces
transformées.

—[ Théoreme 1 — formule de transfert — admis }

Soit f : X(Q) — C. La variable aléatoire f(X) est d’espérance finie si, et seulement si, la famille
(f(@)P(X = )),cx () est sommable. On a alors :

E(f(X)= > [fx)P(X=x)

zeX ()

Le plus souvent, X (2) C C. Mais on peut aussi choisir de considérer deux variables discrétes complexes
(X1, X2) et X = (X1, Xs). A ce moment-1a, X(Q) C C2, et la formule de transfert devient :

E(f(X1,X2)) = Z f(z1,22)P(X1 = x1, X2 = 2) (sous réserve de sommabilité)
($17x2)6(X17X2)(Q)

Exercice 2 : Soit X de loi de Poisson de parameétre A et ¢ réel. Montrer que Y = e'X est d’espérance

finie et calculer son espérance.

Exercice 3 : Calculer E(%) pour X suivant une loi géométrique de parametre p.

,_[ Propriété 3 — calcul de ’espérance par antirépartition ]

Ici, on suppose que X est & valeurs dans N U {+o0}.

E(X) = +fp(x >n) = +f:op(x > n)
n=1

n=0

Exercice 4 : Retrouver, avec cette formule d’antirépartition, ’espérance de X, variable aléatoire suivant
une loi géométrique de parametre p.
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2.2 propriétés de ’espérance

—[ Théoréme 2 — théoréme de domination }

Si X et Y sont deux variables aléatoires vérifiant 0 < |X| < Y. Si Y est d’espérance finie, alors X
est aussi d’espérance finie.

,_' Propriété 4 !

Dans cette propriété, X et Y sont deux variables aléatoires discrétes a valeurs dans R ou C (en
fonction de ce qui a du sens!).

Linéarité de I’espérance : Soient X et Y deux variables aléatoires d’espérance finie.
Pour A, u € C, la variable aléatoire AX + pY est d’espérance finie et on a :

EOX + pY) = AE(X) + pE(Y)

Action « centrer » : si X est d’espérance finie, X — E(X) est centrée.
Positivité de I’espérance : si X > 0, alors E(X) > 0. De plus,

WV

X 0
= (X = 0 presque slirement)
E(X) =0

Croissance de I’espérance : si X et Y sont d’espérance finie et X <Y, on a E(X) < E(Y).

Inégalité triangulaire : X est d’espérance finie si, et seulement si, | X| est d’espérance finie et
dans ce cas, on a

[EQOI < E(X])

,_[ Propriété 5 — linéarité de I'espérance }

Soit (X1,...,X,) une famille de variables aléatoires de L!. Toute combinaison linéaire de
X1,...,X, est dans L' et on a, pour aq,...,a, scalaires,

E(a1X1 +asXo+ -+ aan) = alE(Xl) + CLQE(XQ) + -+ anE(Xn)

E(Xp +Xo+ -+ Xp) = E(X1) + E(X2) + - + E(X5)

pour obtenir au moins une fois chaque couleur.

4
Aprés un calcul d’espérance, vous trouvez E(X) = —. Qu’écrivez-vous sur votre copie 7
’ 3

Supposons que ’expérience consiste a tirer avec remise des boules dans une urne qui contient des
boules vertes, blanches et rouges. X est la variable aléatoire égale au nombre de tirages a effectuer

Exercice 5 : On suppose que X1, X, ..., X, sont des variables aléatoires positives d’espérance finie. Mon-
trer, en utilisant le théoréme de domination, que Z = inf(X;, Xo,..., X)) et T" = sup(Xy, Xo, ..., Xp)

sont aussi d’espérance finie.

Exercice 6 : n personnes se rendent dans un cinéma et chacune choisit I'une des trois salles disponibles,

de maniére équiprobable. Pour i € [1, 3], on note :
X; la variable aléatoire égale au nombre de personnes choisissant la salle numérotée ¢
Ty = 1(x,=0)

et on considere la variable aléatoire T' égale au nombre de salles vides.
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Ecrire T & 'aide de données de I’énoncé et donner alors E(T). On remarquera qu’'on n’a pas du tout
cherché la loi de T pour cela!

,_‘ Propriété 6 l |

Soient X et Y deux variables aléatoires d’espérance finie et indépendantes. On a

E(XY) = E(X)E(Y)

Plus généralement, si X1, Xo,..., X, sont d’espérance finie et indépendantes, X1 Xs...X, est
d’espérance finie et on a :

E(X1X3...X,) =E(X1)E(Xy)...E(X,)

Exercice 7 : On considere une suite de variables aléatoires (Xp,), o+, toutes définies sur le méme espace
probabilisé, mutuellement indépendantes et suivant la loi, dite de Rademacher de parametre p (avec
0 < p < 1), définie par :
P(X,=1)=p e P(X,=-1)=1-p
n
On consideére la variable aléatoire T,, = [ Xg.
k=1
1. Déterminer I’ensemble des valeurs prises par 7T, puis calculer E(7},) et en déduire une relation entre
P(T,=1)et P(T,, = —1).
2. En déduire la loi de T5,.

3 Variance d’une variable aléatoire réelle
Dans toute cette partie, on ne considére que des variables aléatoires a valeurs dans R.

3.1 variables aléatoires dont le carré est d’espérance finie

La notation X € L? signifie que X? est d’espérance finie. Conformément au programme, on ne
soulévera aucune difficulté quant a la définition précise de L2.

,_' Propriété 7 !

SiE(X 2) < +00, alors X est d’espérance finie. Dit autrement,

Xel? = XelL' ouencore L2 C Lt

,_[ Propriété 8 — inégalité de Cauchy-Schwarz ]

Si X et Y sont dans L?, XY est dans L' et on a :

EB(XY)| < /B (X2) /E(r?)

Il y a égalité si et seulement si X et Y sont proportionnelles presque stirement.
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3.2 définition et propriétés de la variance

f_[ Définition 3 }

Pour X € L?, on appelle variance de X le réel positif donné par

V(X) = B ((X - B(X))?)

et écart-type de X le réel o(X) = /V(X).

La variance est la « moyenne » du carré de la distance de X a E(X), et mesure donc la dispersion de X
a sa moyenne.

,_‘ Propriété 9 ! <
Soit X € L2,
o Pour a et bréels, aX +b€ L% et on a V(aX +b) = a®?V(X).

e V(X) =0 si et seulement si X est une variable aléatoire presque-siirement constante.

\. .

,_[ Propriété 10 — formule de Keenig-Huygens ]

V(X) = E(X?) - B(X)?

Une variable aléatoire d’espérance valant 0 et de variance égale a 1 est dite centrée réduite.

,_[ Propriété 11 }

Pour X € L? de variance non nulle, la variable aléatoire

———7 est une variable aléatoire

centrée et réduite.

,_[ Propriété 12 — lois usuelles © ]

o On rappelle que la variance de la loi binomiale B(n,p) est np(1 — p).

¢ X de loi géométrique de parametre p est de variance finie égale a 110;25”.

¢ X de loi de Poisson de parametre \ est de variance finie égale a A.

4 Covariance de deux variables aléatoires de L2
,_[ Définition - propriété 1 }

Pour X et Y dans L?, la variable aléatoire (X — E(X))(Y — E(Y)) est d’espérance finie et cette
espérance est la covariance de X et Y :

Cov(X,Y) = E((X — E(X))(Y - E(Y)))

Dans la pratique, on peut calculer la covariance de X et Y par la formule de Koenig-Huygens
suivante :

Cov(X,Y) = E(XY) — B(X)E(Y)
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Remarques :
— Pour X € L?, on a Cov(X, X) = V(X).
— L’application (X,Y) + Cov(X,Y) est une forme bilinéaire symétrique positive sur L? (mais pas

définie positive). Par exemple,

Cov(5X +3Y,2) =

Cov(X, X +1) =

— Lorsque Cov(X,Y) =0, on dit que X et Y sont décorrélées.

— Si X et Y sont indépendantes, on a vu que E(XY') = E(X)E(Y), donc Cov(X,Y) = 0. Vous avez
vu en MPSI que la réciproque est fausse.

-

{X et Y sont indépendantes } [X et Y sont décorrélées, Cov(X,Y) =0 J

— Une co-variation
Il s’avere que : « Cov(X,Y) > 0 signifie que X et Y ont tendance a étre de méme variation », tandis
que « Cov(X,Y) < 0 signifie que X et Y ont tendance & étre de variation opposée ».

Exercice 8 : On effectue une suite infinie de lancers d’une piéce qui amene Pile avec la probabilité p
(p €]0,1]) et Face avec la probabilité ¢ = 1 — p. On dit que la premiére série est de longueur n (n > 1) si
les n premiers lancers ont amené le méme c6té et le (n+1)° a amené l'autre co6té. On note L; la longueur
de cette série. On définit de méme la longueur Ly de la deuxieme série.

1. Déterminer la loi de L et son espérance.

2. Donner la loi du couple (L1, Lg).

3. Donner la loi de Ly. Calculer E(Ls).

4. On admet que Cov (L, Lo) existe. Calculer Cov(Ly, La).
)

. Etudier alors I'indépendance de L1 et Lo.

,_[ Propriété 13 }

Soient X et Y dans L2. Alors X +Y est dans L2 et on a :

V(X +Y) = V(X)+V(Y) +2Cov(X,Y)

Par exemple,

VX -Y) =

V(aX +bY) =
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,_[ Propriété 14 ] .

Pour toute famille (X7, ..., X,,) de variables aléatoires de L?, la variable aléatoire X1+ Xa+- -+ X,
est dans L? et on a :

e Si Xy,...,X, sont indépendantes,
VXi+Xo+--+X,)=V(X1) + V(X2) + -+ V(X,)
e Dans le cas général,

V(X14+Xo++ X)) = >, Cov(X;, X))
(i.5)€ll,n]?

V(X1 4+ Xo+ 4 Xp) = E V(Xg) + 2 E Cov(X;, X;)
k=1

1<i<j<n

. J

Plutot que de s’'emméler dans la formule, on peut placer les covariances dans la matrice (dite matrice de
variance-covariance) suivante

V(Xl) COV(Xl,XQ) e COV(Xl,Xn)

C — COV(Xl,XQ) V(XQ) :
: . Cov(Xp-1,Xn)
Cov(X1, X,) . Cov(Xp_1,Xn) V(X,)

Dans le cas ol les X}, sont deux a deux non corrélées, pour i # j, on a Cov(X;, X;) = 0 et la matrice de
variance-covariance de X est diagonale.
La somme de tous les coefficients de cette matrice est la variance de X7 + X5 + -+ + X,,.

Exercice 9 (extrait Mines 2024) : Soit X, ..., X, indépendantes et de méme loi, donnée par
1
P(X;=-1)= 5= P(X;=1)
n
On pose S, = > Xj. Donner I'espérance et la variance de S,,.
k=1

Exercice 10 : Soit (X,,)n>1 une suite de variables aléatoires indépendantes suivant toutes la méme loi
de Bernoulli de parametre p €]0, 1[. On pose Y,, = X;, X, 11.

1. Déterminer la loi de Y.
2. Remplir la matrice de variance-covariance (définie ci-dessus) du vecteur (Y1,Ya,...,Y,).

3. En déduire la variance de Z =Y + Yo +--- 4+ Y.
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5 Fonctions génératrices
Dans toute cette partie, on ne considére que des variables aléatoires a valeurs dans N.

—[ Définition 4 }

La fonction génératrice de la variable aléatoire X est la fonction définie par :

—+o00
Gx :t—E(tY)=> P(X =n)t"
n=0

On appelle série génératrice la série entiere associée. On note R son rayon de convergence.

+00
— Cette série converge pour t =1 et Gx(1) = Y P(X =n)=1.
=0
Donc R > 1. "

— Lorsque X est une variable aléatoire finie, Gx est une fonction polynomiale et R = +00.

— Pour tout ¢t € [-1,1], [t"P(X =n)| < P(X =n) donc en posant f, :t+— t"P(X =n), on a
0 < [fnllos, (=1, < P(X =n)

La série Y° P(X = n) converge, donc la série entiére converge normalement, donc uniformément,
sur [—1, 1]. Par transfert de continuité, Gx est continue sur [—1,1].

— Gx est de classe C* sur (au moins) l'intervalle ouvert | — 1,1 et on peut dériver terme a terme la
somme de la série.

,_[ Propriété 15 }

La loi d’une variable aléatoire X & valeurs dans N est déterminée par G x. Plus précisément, on a :

Gy (0)

n!

VneN, P(X =n)=

Deux variables aléatoires a valeurs dans N ont méme loi si, et seulement si, elles ont méme fonction
génératrice.

\. J

— SAVOIR-FAIRE |}

Les étudiants doivent savoir calculer rapidement la fonction génératrice d’une variable aléatoire de
Bernoulli, binomiale, géométrique, de Poisson.
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,_[ Propriété 16 ] |

Soit une variable X a valeurs dans N.

— X € L' si, et seulement si, Gx est dérivable en 1. On a alors :
B(X) = Gx(1)
— X € L? si, et seulement si, Gx est deux fois dérivable en 1. On a alors :
E(X(X —1)) =Gx(1)
et il faut savoir en déduire V(X) par la formule de Huygens.

,_[ Propriété 17 } <

e Si X et Y sont indépendantes et a valeurs dans N, alors

Gx+y =Gx X Gy
e Si X4,...,X, sont indépendantes et & valeurs dans N, alors

GX1+X2+...+Xn = GXl.GX2 e GXn

Exercice 11 : Etudier grace & cette propriété :
1. la loi de la somme de variables aléatoires indépendantes de lois de Poisson P(\1), ..., P(A\),

2. la loi de la somme de variables aléatoires indépendantes de lois binomiales B(nq,p), ..., B(n,,p).

Exercice 12 : On donne, pour tout réel t, Gx (t) = ae' .
1. Donner a.

2. Donner la loi de X.

3. Donner, a 'aide de Gx, 'espérance et la variance de X.

6 Inégalités probabilistes et loi faible des grands nombres

6.1 inégalités de concentration

Les inégalités de concentration sont des inégalités qui majorent la probabilité quune variable aléatoire
dévie, s’écarte, d’une certaine valeur (en général son espérance).

,_[ Théoreme 3 — Inégalité de Markov }

Soit X une variable aléatoire réelle, a valeurs positives. On a

E(X
Va>0, P(X >a)< E(X) (inégalité dans RT U {+o00})
a

Sans 'hypothese de positivité de X, on pourra écrire :

E([X])

Va >0, P(|X|>a)<
a
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,_[ Théoréme 4 — Inégalité de Bienaymé-Tchebychev ]

Soit X une variable aléatoire réelle de L2. On a

V(X)
2

ve>0, P(IX-B(X) >e)< :

Donnons des exemples d’inégalités de concentration qu’on peut obtenir avec 'inégalité de Bienaymé-
Tchebychev.

Soit X d’espérance m et de variance 2. On applique Iinégalité de Bienaymé-Tchebychev avec € = ao
ot a > 0. On obtient P(|X —m| > ao) < ?12 En particulier :

— P(|X —m| >20) < 1 (il y a moins de 25% de chance que X s'écarte de sa moyenne de plus de 20)

— P(|X—m| > 100) < 155 (il y a moins de 1% de chance que X s’écarte de sa moyenne de plus de 100).

Exercice 13 (oral Mines-Télécom, extrait) : Soient X7, ..., X,, des variables aléatoires indépendantes qui
n

suivent toutes la loi uniforme sur {—1,1}. On pose S, = > X;.
i=1

1. Pour n € N* et t > 0, calculer E(e'S).

2. Montrer que pour tout réel ¢, ch(t) < exp(%).

a2
3. Montrer que pour a > 0, P(S, > a) < e 2n.

6.2 loi faible des grands nombres

,_[ Théoreme 5 — Loi faible des grands nombres ]

Soit (X}, )n>1 une suite de variables aléatoires indépendantes de méme loi et de variance finie. Alors,
pour tout € > 0,

n—o0

lim P(‘Sn—m’25>:0
n

n
ou S, =Y Xpetm=EX)).
k=1

Effectuons une suite d’expériences de Bernoulli indépendantes et notons X; la variable aléatoire égale & 1 si la ¢i¢me
expérience donne un succes et valant 0 si c’est un échec.

[X 1+ X2+ -+ 4+ X, est égale au nombre de succes dans les n premieéres expériences.}

La probabilité empirique de succes (ou fréquence de succes) au bout de n expériences est une réalisation de la

Xy +Xote 4 X
n

variable aléatoire » gvec les X; indépendantes d’espérance p et de variance p(1 — p). La loi faible des

grands nombres traduit I'intuition :

la probabilité empirique de succes tend vers la probabilité théorique de succes (p) quand le nombre d’expériences
tend vers 'infini.

En 1906, le statisticien anglais Francis Galton (voulant en fait démontrer l'intelligence des experts) demanda &
787 personnes de deviner le poids d’un boeuf exposé dans une foire. Alors que la plupart des réponses prises indi-
viduellement étaient largement inexactes, la moyenne des estimations fut exacte a 1% pres. Cette idée qu'un grand
nombre de personnes peuvent (parfois) donner ensemble une réponse d’expert est le concept de sagesse des foules.
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S (w)

Nous visualisons, en complétant les légendes, les évolutions de ( - )
1<n<500

pour 3 résultats w, ot (X;);en+ est

une suite de variables indépendantes et de méme loi que X.

104
0 e
0.3
o /\/
0 : : .
500 100
X suit la loi de Bernoulli 5(0.3) X n’a pas d’espérance
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7 Annexe : quelques éléments de démonstrations

Propriété 1
Supposons que X est bornée. 1l existe k réel tel que | X| < k. On a

0<|zP(z=2)|< MP(X =1z)

(On rappelle si besoin que X (£2) est au plus dénombrable).
La famille (MP(X = x))zex(n) est sommable (de somme M) donc par comparaison, la famille (zP(X = )),ex (o) lest
aussi, et X € L.

Propriété 2 (loi géométrique, loi de Poisson)
Dans les deux cas, X est a valeurs positives, donc X admet une espérance finie si et seulement si F(X) < +oo.
Commencons par G(p).

+oo

B(X) = ) k1-p)*'p

k=1
La série entiére » 2" est de rayon de convergence 1. La fonction somme est dérivable (et méme C°°) sur Pintervalle ouvert
de convergence et ses dérivées s’obtiennent par dérivation terme a terme.

—+oo

Ve €] - 1,1], f(x):zxk: L

1—=x
k=0

+o0
/ -1 !
Va €] - 1,1], f(x):k;’mk T (-a)?

et on trouve E(X) = % < +oo donec X € L.

_ p
— (1-a-p)?

Poursuivons avec la loi de Poisson P()\).

doo vk IR gk
e A e A
E(X) = k =
(0 = DR =2 G
k=0 k=1
= e AN
= Z — = A < 400
=7
donc X € L.
Propriété 3 Nous travaillons ici dans RT U {+co}.
+o00 +oo oo
Y PX>n) = Y > P(X=k)
n=0 n=0 k=n+1
4o k—1
= Z Z P(X = k) par le théoréme de Fubini, cas positif
k=1 n=0

+oo
= Y kP(X =k)=E(X)

Théoréme 2 (admis)

(Repose sur le théoréme de transfert qui a été admis...). On admettra.

On pose Z = (X,Y) et on note m et w2 les applications projections, ce qui donne m2(Z) = Y. Par hypothése, Y est
d’espérance finie, donc par la formule de transfert, la somme en jeu dans ce qui suit est sommable, et

EY)= Y mEyPX=zY=y= » yP(X=zY=y)
(z,y)€Z(Q) (z,y)€Z(Q)
Pour (z,y) € Z(Q), il existe w € Q tel que (z,y) = (X (w), Y (w)), ce qui fait que :
O0<|z|P(X =2,Y =y) <yP(X =z,Y =vy)
Donc > |z|P(X = z,Y = y) est sommable. Donc par le théoréme de transfert, m1(X,Y) est d’espérance finie.

(z,9)EZ(Q)
Autrement dit, X est d’espérance finie.
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Propriété 4

linéarité de l’espérance : On l'admet (trop de questions de sommabilité).
La propriété sur la variable centrée s’en déduit.

positivité de ’espérance : si X > 0, alors E(X) est la somme d’une famille sommable de termes positifs, donc positive.
De plus, E(0) = 0 (somme de termes nuls).

X 20
Et si {E(X) 0 alors pour tout z € X(Q2),on a 0 < zP(X = z) < E(X) = 0 donc P(X = z) = 0 pour tout =

autre que 0. Enfin,

zeX(2)\{0}
croissance de ’espérance : si X et Y sont d’espérance finie et X <Y, alors 0 < Y — X. Par positivité, 0 < E(Y — X).
Et par linéarité, 0 < E(Y) — E(X). Ainsi E(X) < E(Y).

inégalité triangulaire : Admis. Facile pour ’équivalence des espérances finies, puis croissance de ’espérance.

Propriété 6

Par indépendance de X et YV, P(X =z,Y =y) = P(X =2)P(Y =y).

Par la formule de transfert, XY est d’espérance finie si et seulement si la famille (zyP(X = z,Y = ¥))@,yex (@) xv (@) €st
sommable. Or

> lwyPX=2Y=y) = > mIP(X =2)P(Y =y)

(2,9)EX ()XY () (2,y)EX ()XY ()
E(IXDE(Y]) < 400

donc XY est d’espérance finie. De plus, en reprenant le méme type de calcul,

E(XY) = > wyP(X =z,Y =y) = > 2yP(X = z)P(Y = y) = E(X)E(Y)
(z,y)EX(Q)XY () (z,y)EX(Q) XY (Q)
Propriété 7 et propriété 8 (Cauchy-Schwarz)
Démonstration intéressante.

Soient X et Y dans L'.
On connait I'inégalité : |ab| < 3(a® + b°). Avec le théoréme de domination, on en déduit le lemme suivant.

r—' Lemme 1 :

Si X et Y sont dans L?, la variable XY est dans L*.

Remarque : on peut facilement en déduire que
L? = {variables aléatoires discrétes réelles sur (2, A, P) telles que X soit d’espérance finie}

est un R-espace vectoriel.
On déduit du lemme, avec X et Y =1, que X € L? = X € L*.

« Pour t réel, considérons P(t) = E((tX 4 Y)?). Puisque (tX + Y)? = X2 + 2tXY + Y2, il s’agit d’une combinaison
linéaire de variables d’espérance finie (par le lemme), donc bien d’une variable d’espérance finie (par linéarité). Et

P(t) = ’B(X?) + 2tE(XY) + E(Y?)

Dans le cas ou E(XQ) =0, comme X2 >0, X? est presque siirement nulle, et donc XY et X sont presque stirement nulles.
L’inégalité attendue est satisfaite et est méme une égalité. Dans le cas ot E(X?) # 0, P est un polynéme du second degré
et de signe constant. Son discriminant A est donc négatif ou nul. Or A = 4((E(XY))? — E(X?)E(Y?)), donc on a 'inégalité
cherchée :

(E(XY))* < E(XH)E(Y?)
e Si X = 0 presque siirement, on a, on ’a vu, égalité dans 'inégalité précédente.
o Et si E(X?) # 0, on a égalité dans I'inégalité si, et seulement si, A = 0 si, et seulement si, Ity € R tel que P(tp) = O si,
et seulement si, Ito € R tel que E((toX + Y)?) = 0, si, et seulement si, Y = —toX presque stirement.
En définitive, il y égalité si, et seulement si, il existe a et b réels tels que P(aX +bY =0) = 1.
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Propriété 9

« Par linéarité de I'espérance, (aX 4+ b — E(aX + b))?> = a*(X — E(X))? et on applique & nouveau la linéarité de la
variance.

e Si X est presque siirement constante, alors il existe m tel que P(X =m) =1. On a E(X) = m, et donc
P((X —E(X))?*=0)=1et E(X — E(X))2 =0.

E(X - E(X))* =

(X ( )? >

En notant m = E(X), ( m) =

Si V(X) =0, alors { donc (X — E(X))? = 0 presque sfirement.

Propriété 12
e Soit X de loi géométrique de parametre p.
X(X — 1) est & valeurs positives. Par le théoréme de transfert, si la quantité suivante est finie, X (X — 1) sera
d’espérance finie.

+o0 oo
E(X(X 1))=Y nn—-1)P(X =n) =Y p(l—pn(n—1)1-p)""

La série entiere Y 2" est de rayon de convergence 1. La fonction somme est dérivable (et méme C>) sur lintervalle
ouvert de convergence et ses dérivées s’obtiennent par dérivation terme a terme.

+oo 1
Vo €] - 1,1], f(m)=;$k= -
+oo 1
, k—1
vz €] —1,1] f(w)_;’“ (1—2x)
YV E]_l 1 ” Zk —]. (1 EI)3

On trouve alors E(X (X — 1)) = p(1 —p) (1_(1_p>)3 = 2%;?). On remarque que
X? = X(X — 1) + X donc par linéarité de Despérance, B(X?) = =—L 4 =

. . . ; v 11—
On termine avec la formule de Huygens. X est de variance finie égale a p—f.

e Soit X de loi de Poisson de paramétre A. X (X — 1) est & valeurs positives. Par le théoréme de transfert, si la quantité
suivante est finie, X (X — 1) sera d’espérance finie.

+oo +oo

—A\2 \n—2
BX(X 1))=Y nm-DPX=n) =Y % A2

n=0 n=2

On remarque que
X? = X(X — 1) + X donc par linéarité de I'espérance, E(X?) = X\* + X

On termine avec la formule de Huygens. X est de variance finie égale a .

Propriété 13

V(X+Y) = E[(X+Y-EX+Y))?| =E[(X-EX)+Y - E(®Y))’]
= E[(X —E(X))®+ (Y —E(Y))’ +2(X — E(X))(Y — E(Y))]
= V(X)+V(Y)+2E[X — EX))(Y —E(Y))]

Théoréme 3, inégalité de Markov
On démontre 'inégalité de Markov dans le cadre suivant : variable aléatoire discréte a valeurs dans N. Puis nous donnons
une autre facon de faire pour travailler les variables aléatoires indicatrices d’un événement.

Si E(X) = 400, on a bien P(X >a) <1< E(X) pour a > 0.

Dans ce qui suit, X est une variable aléatoire a valeurs positives d’espérance finie; a est un réel strictement positif.
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CasoU X(Q)={i, i€} aAvEcICN
On note J ’ensemble des indices 7 de I pour lesquels i > a.

E(X) = Y iP(X=i)=) iP(X=1i)+ Y iP(X =1)

iel ieJ icT

Comme X est & valeurs positives, pour tout i € J, on a iP(X = i) > 0. Par positivité pour la somme de séries convergentes,
S iP(X =) > 0.
i€
D’autre part, pour ¢ € J, on a iP(X =14) > aP(X =i). Par croissance de la somme de séries convergentes,

Y iP(X =i) > Y aP(X =)

ieJ ieJ
> a) P(X=i)
i€J
> aP(X >a)

DEMONSTRATION AVEC DES VARIABLES ALEATOIRES INDICATRICES
On introduit ¥ = X 1 (x3>4).
al(x>q) vaut 0 si (X < a) est réalisé, et vaut a si (X > a) est réalisé. On a donc :

0 < al(x>a) < X

Par croissance de 1’espérance :

E(al(x>a)) < E(X)
aE (I(xsa)) < E(X)
aP(X >a) < EX)

Théoréme 4, inégalité de Bienaymé-Tchebychev

Soit X € L?. Soit € > 0.

On pose Y = (X — E(X))2. Y est a valeurs positives et admet une espérance. On applique & Y I'inégalité de Markov avec
2

a=c¢":

V(X
P(Y > &%) < 22 )
Enfin, on remarque que (Y > &%) = (VY > [¢|) = (|X — E(X)| > ¢). On a bien :
PX ~B(X)| > 6) < V)

Théoréme 5, loi faible des grands nombres
Soit (X,) une suite de variables aléatoires indépendantes admettant une méme espérance finie m et une méme variance finie
o2. Par linéarité de Iespérance :

(BE(X1) + E(Xz) + - + E(X,))

(nm) =m

SIm3=

Par propriété « V(aZ) = a*V(Z) », puis par propriété pour la variance d’une somme de variables aléatoires indépendantes,
% admet une variance et :

V(%) = V(X4 X))
= L (V(X) 4 V() e  V(X)
= %(naQ)ZU—

Soit € > 0. D’apres 'inégalité de Bienaymé-Tchebychev :

2
O<P(|%—m|>€)<g—

2

. g ;s
Ona lim — = 0. Par le théoréme d’encadrement,
n——+oo NE

lim P(2% —m|>e) =0
n——+oo n
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Fonctions génératrices pour les lois usuelles
Les étudiants doivent savoir calculer rapidement la fonction génératrice d’une variable aléatoire de Bernoulli, binomiale,
géométrique, de Poisson.

e Pour X ~b(p), Gx(t) = P(X =0) + P(X = 1)t = q + pt pour tout ¢ réel.
e Pour X ~ B(n,p),

Gx(t) = Y (:)pkqn_ktk = (pt+q)"

k=0

e Pour X suivant la loi géométrique de parameétre p,

+oo —+oo

_ w 1 t

Gx(t) _ quk Ik _ qujt]+1 =tp p
k=1 j=0

1—tq:1—qt

e Pour X suivant la loi de Poisson de parameétre A,

T _Ayksk
e "Nt _ _
Gx(t) = = A = A
k=0
Propriété 16
Conformément au programme, on ne montre que le premier sens direct. Soit X d’espérance finie, montrons que Gx est
dérivable en 1 et G’x (1) = E(X).
Soit R le rayon de convergence de > P(X = n)t™. On a R > 1 et Gx est dérivable sur | — R, R[, donc sur | — 1,1], et
—+o0
Gx®t) = > nP(X =n)t""".
n=1
e Si R>1, Gx est dérivable en 1 et G'x (1) = E(X).
o Et si R =1, comme Y nP(X = n) converge, on peut appliquer le théoréme d’Abel radial pour obtenir
+oo
lin} Gx () = > nP(X =n) =E(X).
t— n—=1
Par ailleurs, on a vu que Gx était continue sur [0, 1]. Par le théoréme de la limite de la dérivée, Gx est dérivable en 1.

La réciproque est admise, conformément au programme, de méme que la réciproque pour le 2& point (que je passe en-
tiérement).

Propriété 17

Soient X1, ..., X, indépendantes. Par la propriété de transfert d’indépendance, tX!,...,t*" sont indépendantes. Par pro-
priété pour ’espérance d’un produit de variables aléatoires indépendantes,

B %2 ) = BEHE@WE?) . B

puis le résultat.
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