
Probabilités et lois de variables aléatoires discrètes

Les attentes

1. Connaître toutes les règles de calculs des probabilités : union (σ-
additivité), intersection finie (en cas d’indépendance), passage au
complémentaire, théorème de continuité monotone.

2. Propriété de sous-additivité.
3. Formules : probabilités totales, probabilités composées.
4. Quand est-ce que des nombres (pn)n∈N représentent une distribution

de probabilités ?
5. Savoir déterminer la loi (dite marginale) de X lorsqu’on connaît la

loi du couple (X, Y ).
6. Théorème de transfert d’indépendance.
7. Maîtriser les lois usuelles. Notamment, savoir repérer et rédiger

impeccablement le modèle binomial, le modèle géométrique.

1. Savoir définir la notion de tribu. Savoir alors montrer que X est une
variable aléatoire sur (Ω, T ).

2. Lemme des coalitions.

1 Espace probabilisable

1.1 expérience aléatoire et univers

Une expérience aléatoire est une expérience qui ne dépend que du hasard (lancer d’un dé, même pipé ;
tirage au sort...).
L’ensemble Ω des résultats, ou issues, possibles de l’expérience, est appelé univers.

Pour chacun des exemples suivants, donnons l’ensemble Ω des résultats possibles :
1. On lance une pièce de monnaie : Ω =

2. On lance deux fois successives un dé à 6 faces : Ω =

3. On lance une pièce jusqu’à ce que l’on obtienne Pile : Ω =

4. Un joueur effectue une succession infinie de lancers d’une pièce de monnaie : Ω =

5. On suit une molécule dans une enceinte gazeuse d’un centimètre cube ; au bout de 15 secondes, on
note sa position (ses coordonnées).
Ω =
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Un événement est une partie de Ω. Il y a en particulier l’événement impossible ∅, l’événement certain Ω,
les événements élémentaires constitués d’un singleton {x}, x ∈ Ω.
Des événements sont incompatibles lorsqu’ils ne peuvent pas être réalisés simultanément : A ∩ B = ∅.

Langage probabiliste Langage ensembliste exemple : un lancer d’un dé
« français » « mathématiques »

ensemble des résultats possibles Ω

événement sous-ensemble de Ω obtenir un nombre pair :

E1 ou E2 est réalisé E1 ∪ E2 obtenir 1 ou 3 est

les deux événements E1 et E2 sont réalisés E1 ∩ E2

événement contraire E1

E1 est réalisé, mais pas E2 E1 − E2 = E1 ∩ E2

au moins l’un des événements est réalisé union ⋃
i∈I

Ei

tous les événements sont réalisés intersection ⋂
i∈I

Ei

« lorsque E1 est réalisé, alors E2 l’est
aussi »

E1 ⊂ E2 si on obtient 1, a fortiori on
obtient un nombre impair :

1.2 cas d’un univers fini

Ici Ω = {ω1, ω2, ...ωn} est fini.
• Une probabilité sur l’espace (Ω, P(Ω)) est une application P : P(Ω) −→ [0, 1] vérifiant :

— P (Ω) = 1
— pour A et B ∈ P(Ω) tels que A ∩ B = ∅, on a P (A ∪ B) = P (A) + P (B).

Le triplet (Ω, P(Ω), P ) est appelé espace probabilisé fini.

• Soient p1, p2,...pn des réels.
Il existe une probabilité P sur (Ω, P(Ω)) vérifiant ∀i ∈ J1, nK, P ({ωi}) = pi si, et seulement si, les
réels pi sont positifs et de somme 1. Dans ce cas, la probabilité d’un événement A se calcule par

P (A) =
∑

ωi∈A

P ({ωi}) =
∑

i| ωi∈A

pi

Par exemple, dans un lancer de dé,

P ({obtenir un nombre pair}) = P ({2}) + P ({4}) + P ({6})
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• L’espace probabilisable (Ω, P(Ω)) est muni de la probabilité uniforme ou équiprobabilité si tous les
événements élémentaires ont même probabilité :

P ({ωi}) = 1
n

pour tout i ∈ J1, nK

On calcule dans ce cas la probabilité d’un événement A ∈ P(Ω) par :

P (A) = nombre de cas favorables à A

nombre de cas possibles = Card(A)
Card(Ω)

1.3 notion de tribu

Un peu de culture générale :
Les travaux de Kolmogorov (années 1930 ) en théorie des probabilités l’ont amené à chercher les conditions

requises sur l’ensemble A des événements liés à l’expérience aléatoire pour qu’on puisse y définir une application
probabilité (satisfaisant aux propriétés intuitives d’une probabilité, notamment l’idée d’additivité). Un point délicat
de la théorie des probabilités est qu’on ne considère pas toujours toutes les parties de Ω comme des événements :
dans certains cas A ⊂ P(Ω) mais A ≠ P(Ω).

Considérons l’exemple de la position aléatoire x d’une particule dans l’intervalle Ω = [0, 1]. Il serait naturel de
définir P (« x appartient à ]a; b[ ») = b − a et plus généralement, pour A partie de Ω, P ([x ∈ A]) = longueur(A).
Toutefois, il existe des parties de [0, 1] dont on ne parvient pas à donner une définition de longueur (qu’on ne
parvient pas à « mesurer »)... Ainsi, on dût se limiter à définir les probabilités non pas sur P(Ω) entier, mais sur
un sous-ensemble restreint (tribu A) vérifiant certaines propriétés algébriques de stabilité...

Quelles sont les conditions requises pour A ?
On va demander de pouvoir effectuer sur les événements de A les opérations d’union (le ou en français), d’intersec-
tion (le et du français), de passage au complémentaire (pour pouvoir considérer les événements contraires) autant
de fois dénombrables qu’on le désire en restant dans le même ensemble d’événements A.

Définition 1

On appelle tribu sur Ω tout sous-ensemble A de P(Ω) vérifiant :
— Ω appartient à A
— A est stable par passage au complémentaire : si A ∈ A, alors A ∈ A
— A est stable par union dénombrable :

si (An)n∈N est une suite d’événements de A, alors ⋃
n∈N

An appartient à A.

Un ensemble d’une tribu est appelé événement.
On appelle espace probabilisable associé à une expérience aléatoire la donnée de l’ensemble des
résultats possibles Ω et d’une tribu A d’événements.

L’ensemble {∅, Ω} est une tribu de Ω. Elle n’est pas intéressante car elle ne permet de considérer que
l’événement impossible et l’événement certain.

L’ensemble P(Ω) des parties de Ω est une tribu de Ω. Elle n’est pas toujours intéressante, car dans
certains cadres, elle est un peu trop grosse et il est impossible de définir une probabilité sur cette tribu.
Néanmoins, si Ω est fini ou dénombrable, P(Ω) est une tribu.
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Propriété 1

Soit A une tribu. On a les propriétés :
— A contient ∅
— A est stable par union finie : si A1, A2,...An sont dans A, alors A1 ∪ A2 ∪ ... ∪ An appartient

à A
— A est stable par intersection finie : si A1, A2,...An sont dans A, alors A1 ∩ A2 ∩ ... ∩ An

appartient à A
— soit (Ai)i∈N est une famille d’événements de A, alors ⋂

i∈N
Ai appartient à A.

Définition 2

Soit (Ω, A) un espace probabilisable. On appelle système complet d’événements, toute famille, finie
ou infinie dénombrable, (Ai)i∈I telle que :

— les Ai sont des événements : Ai ∈ A
— les Ai sont deux à deux incompatibles : Ai ∩ Aj = ∅ pour i ̸= j

— l’union des Ai est Ω : Ω = ⋃
i∈I

Ai.

Exercice 1 : On effectue n lancers d’un dé. On note Sk l’événement « on obtient 6 au k-ième lancer ».
Écrire avec des événements de type Sk les événements :

• A « on n’obtient que des 6 »
• B « on n’obtient jamais 6 »
• C « on obtient 6 pour la première fois au n-ième lancer »
• D « on obtient exactement une fois un 6 »

Exercice 2 : Écrire à l’aide d’unions, intersections, complémentaires et des événements A, B, C, A1, A2, . . .
les événements suivants :

1. L’un au moins des événements A, B, C est réalisé.
2. L’un et l’un seulement des événements A, B, C est réalisé.
3. A et B se réalisent mais pas C.
4. Tous les événements An sont réalisés à partir du rang 10.
5. Seul un nombre fini d’événements An, n ⩾ 1, se réalise.
6. Il y a une infinité des événements An, n ⩾ 1, qui se réalisent.

2 Application probabilité sur un espace probabilisable
Soit (Ω, A) un espace probabilisable.

MP 2025 – 2026 4 D. Leroy, lycée Pissarro



Définition 3

On appelle probabilité toute application P : A −→ [0, 1] vérifiant :
— P (Ω) = 1
— P est σ−additive, c’est-à-dire que si (An)n∈N est une suite d’événements 2 à 2 incompatibles,

alors : P (
∞⋃

n=0
An) =

∞∑
n=0

P (An)

L’espace probabilisable (Ω, A) muni d’une probabilité P est appelé espace probabilisé.

En prenant An = ∅ pour tout n, on obtient P (∅) =
∞∑

n=0
P (∅) puis P (∅) = 0.

La σ-additivité nous donne, en prenant Ak = ∅ pour k > N , la propriété d’additivité :

pour A1, A2, ..., AN deux à deux incompatibles, P (A1 ∪ A2 ∪ ... ∪ AN ) = P (A1) + P (A2) + ... + P (AN )

On retrouve en particulier, pour A et B événements incompatibles, P (A ∪ B) = P (A) + P (B).

Propriété 2

On a les propriétés élémentaires :
1. P ( A ) = 1 − P (A)
2. Si A ⊂ B, P (B \ A) = P (B) − P (A)
3. Si A ⊂ B, P (A) ⩽ P (B). Cette propriété s’appelle la croissance de P .
4. P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

Théorème 1 – théorème de continuité monotone

• Soit (An)n∈N une suite croissante d’événements, c’est-à-dire telle que An ⊂ An+1. Alors :

P

( ∞⋃
n=0

An

)
= lim

n→+∞
P (An)

• Soit (An)n∈N une suite décroissante d’événements, c’est-à-dire telle que An+1 ⊂ An. Alors :

P

( ∞⋂
n=0

An

)
= lim

n→+∞
P (An)

Corollaire 1 – ♡

Pour toute suite (An) d’événements,

P

( ∞⋃
n=0

An

)
= lim

n→+∞
P

(
n⋃

k=0
Ak

)
et P

( ∞⋂
n=0

An

)
= lim

n→+∞
P

(
n⋂

k=0
Ak

)

Exercice 3 : On effectue une succession infinie de lancers d’une pièce équilibrée. On admet qu’il existe une
tribu A ⊂ P(Ω) et une probabilité P sur (Ω, A ) qui coïncide avec la probabilité uniforme sur l’univers
correspondant aux n premiers lancers, pour tout n.
An désigne l’événement « les n premiers lancers donnent tous Face ».

1. Soit n ∈ N∗. Calculer la probabilité de An.
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2. Soit A l’événement « on obtient toujours face ». Calculer sa probabilité.

Exercice 4 : On lance indéfiniment une pièce donnant Pile avec probabilité p ∈]0; 1[ et Face avec probabilité
q = 1 − p. On note Sk l’événement « on obtient Pile pour la première fois au ke lancer ».

1. Calculer la probabilité de l’événement A « on obtient au moins une fois Pile » en utilisant les
événements Sk.

2. Soit B l’événement « on obtient Pile pour la première fois au bout d’un nombre pair de lancers ».
Montrer que P (B) = q

1+q .

Propriété 3 – sous-additivité de P

• P (A1 ∪ A2 ∪ · · · ∪ An) ⩽ P (A1) + P (A2) + · · · + P (An).

• P

(+∞⋃
k=0

Ak

)
⩽

+∞∑
k=0

P (Ak) ⩽ +∞

On peut donner un sens à l’inégalité précédente même si la série ∑
k

P (Ak) diverge, puisqu’étant à termes
positifs, si la série diverge, sa somme est +∞.
Plus généralement, pour (Ai)i∈I famille au plus dénombrable d’événements, on a :

P

(⋃
i∈I

Ai

)
⩽
∑
i∈I

P (Ai) ⩽ +∞

Définition 4

On appelle système quasi-complet d’événements toute famille au plus dénombrable (Ai)i∈I d’évé-

nements deux à deux incompatibles tels que P

(⋃
i∈I

Ai

)
= 1.

En particulier, un système complet d’événements est un système quasi-complet d’événements.

Propriété 4 – formule des probabilités totales

Pour tout système quasi-complet d’événements (Ai)i∈I et
tout événement B, on a :

P (B) =
∑
i∈I

P (Ai ∩ B)

A1

A2

A3

A4

B

B

B

B
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Définition 5
• Tout événement de probabilité nulle est dit négligeable.
• Tout événement de probabilité 1 est dit presque sûr ou presque certain.

Propriété 5

• Une réunion au plus dénombrable d’événements négligeables est un événement négligeable.
• Une intersection au plus dénombrable d’événements presque sûrs est un événement presque

sûr.

3 Probabilités conditionnelles et indépendance

3.1 trois grandes formules de probabilité

Définition 6

Soit (Ω, A, P ) un espace probabilisé et A un événement tel que P (A) ̸= 0. On appelle probabilité

conditionnelle sachant A l’application PA définie sur A par : PA(B) = P (A ∩ B)
P (A) . On peut aussi

noter PA(B) = P (B|A).

Propriété 6

PA est une probabilité, autrement dit (Ω, A, PA) est un espace probabilisé. Par conséquent, toutes
les propriétés relatives aux espaces probabilisés sont valables pour PA.

Propriété 7 – formule des probabilités composées

Soient A1, A2,..., An des événements tels que P (A1 ∩ A2 ∩ ... ∩ An−1) ̸= 0. On a :

P

(
n⋂

i=1
Ai

)
= P (A1) × PA1(A2) × PA1∩A2(A3) × PA1∩A2∩A3(A4) × ... × PA1∩A2∩...An−1(An)

Exercice 5 (B.E.O.) : Soit n ∈ N∗. Une urne contient n boules blanches numérotées de 1 à n et deux
boules noires numérotées 1 et 2.
On effectue le tirage une à une, sans remise, de toutes les boules de l’urne.
On suppose que tous les tirages sont équiprobables.
On note X la variable aléatoire égale au rang d’apparition de la première boule blanche.
On note Y la variable aléatoire égale au rang d’apparition de la première boule numérotée 1.

1. Déterminer la loi de X.
2. Déterminer la loi de Y .
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Propriété 8 – formule des probabilités totales

Soit J une partie de N et (Bj)j∈J un système complet d’événements de probabilités non nulles.
Alors pour tout événement A, on a :

P (A) =
∑
j∈J

P (Bj)PBj (A)

Cette formule reste vraie pour un système quasi-complet d’événements.

Pour éviter les complications, on convient souvent dans cette formule que P (Bj)PBj (A) = 0 si P (Bj) = 0,
ce qui permet de l’utiliser même sans savoir que les événements du système complet sont de probabilités
non nulles.

Exercice 6 : On veut enquêter sur la proportion (x, inconnue) de personnes qui volent dans les grandes
surfaces. La question est « Avez-vous volé dans un magasin au cours des douze derniers mois ? ». On
comprend que la personne interrogée hésite à répondre oui. Afin de mettre en confiance les personnes
sondées pour qu’elles ne mentent pas, on met en œuvre le protocole suivant.
On appelle question 1 la question précédente, et question 2 la question « Avez-vous pris des vacances
à plus de 100 kilomètres de chez vous au cours des douze derniers mois ? ». L’enquêteur demande à la
personne interrogée de jouer à Pile ou Face, hors de sa présence, et de répondre à la question 1 si elle
obtient Pile et à la question 2 sinon. La personne interrogée donne seulement sa réponse sans dire à quelle
question elle a répondu.
Une enquête indépendante montre que le taux de réponses affirmatives à la question 2 est 60%.
À la fin des sondages réalisés, l’enquêteur obtient un taux de réponses affirmatives (pour les deux ques-
tions) égal à t. Trouver alors la valeur de x apportée par ce sondage.

3.2 événements indépendants

Définition 7

Soit (Ω, A, P ) un espace probabilisé. Les événements A et B sont indépendants si

P (A ∩ B) = P (A) × P (B)

Si A est de probabilité non nulle, A et B sont indépendants si, et seulement si, PA(B) = P (B). Autrement
dit, si savoir que A est réalisé n’influence pas le calcul de la probabilité de B.
Dans la pratique, il y a deux types de questions. Il y a des exercices où l’on doit démontrer que A et
B sont indépendants, en calculant P (A), P (B) et P (A ∩ B) et en regardant si on a l’égalité voulue
pour l’indépendance. Et il y a d’autres exercices, où l’on invoque d’emblée une indépendance classique,
garantie en général dans l’énoncé (lancers de pièce, tirages avec remise...).
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Définition 8

Soit (Ai)i∈I une famille d’événements.
• Les événements sont 2 à 2 indépendants si ∀i ̸= j, les événements Ai et Aj sont indépendants.
• Les événements sont (mutuellement) indépendants si pour toute partie finie J de I on a :

P

⋂
j∈J

Aj

 =
∏
j∈J

P (Aj)

Exercice 7 : On considère l’expérience aléatoire consistant à lancer deux dés. On munit l’univers de la
probabibilité uniforme. On considère les événements suivants :

A : « le résultat du premier dé est pair »
B : « le résultat du deuxième dé est pair »
C : « la somme des résultats des deux dés est pair ».

Montrer que les événements A, B et C sont deux à deux indépendants mais pas mutuellement indépen-
dants.

Propriété 9

Si A et B sont deux événements indépendants, alors les événements A et B sont indépendants.

Corollaire 2

Si (Ai)i∈I est une famille d’événements indépendants, et si pour tout indice i, Bi = Ai ou Ai, alors
(Bi)i∈I est aussi une famille d’événements indépendants.

Exercice 8 : On considère deux urnes :
U1 contenant n1 boules noires et b1 boules blanches ;
U2 contenant n2 boules noires et b2 boules blanches.

On choisit de manière équiprobable une urne, et on y effectue deux tirages successifs d’une boule avec
remise.
On note A (respectivement B) l’événement « on tire une boule noire au premier (resp. au second) tirage ».

1. Calculer P (A) et P (B).
2. À quelle condition nécessaire et suffisante sur n1, n2, b1, b2, les événements A et B sont-ils indépen-

dants ?

4 Retour sur les espaces probabilisés

Définition 9

Une distribution de probabilités discrète sur un ensemble Ω est une famille sommable (pω)ω∈Ω de
réels positifs, de somme 1.
Son support est l’ensemble {ω ∈ Ω | pω ̸= 0}. Cet ensemble est au plus dénombrable.

Au chapitre Familles sommables, on a vu que le support d’une famille sommable de nombres complexes
était dénombrable, c’est-à-dire que si ∑

i∈I
|ai| < +∞, alors {i ∈ I | ai ̸= 0} est au plus dénombrable. Et

donc en fait, cela revient à sommer uniquement sur un ensemble dénombrable.
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Propriété 10

Soit Ω un ensemble au plus dénombrable. Si (pω)ω∈Ω est une distribution de probabilités discrète,
il existe une unique probabilité P définie sur (Ω, P(Ω)) telle que pour tout ω ∈ Ω, pω = P ({ω}) ;
elle est définie par :

P (A) =
∑
ω∈A

pω

L’espace probabilisé (Ω, P(Ω), P ) est appelé espace probabilisé discret.

Exercice 9 : Montrer que ((1
2)n)n∈N∗ est une distribution de probabilité discrète. Donner l’application

probabilité associée. Montrer que pour cette probabilité, il est plus probable d’obtenir un nombre impair
qu’un nombre pair.

5 Variables aléatoires discrètes

5.1 généralités

Définition 10

Soient (Ω, A) un espace probabilisable et E un ensemble non vide. On appelle variable aléatoire
discrète toute application X : Ω → E vérifiant :

• X(Ω) est au plus dénombrable
• pour tout x ∈ X(Ω), X−1({x}) ∈ A.

L’événement X−1({x}) = {ω ∈ Ω | X(ω) = x} est noté (X = x) ou {X = x}.

Remarques :
— L’appellation variable aléatoire est malheureuse. En effet, X n’est pas une variable, mais une fonc-

tion et celle-ci n’est pas aléatoire, mais parfaitement déterminée. Ce sont les valeurs de X qui varient
selon le résultat de l’expérience aléatoire. Par exemple, X est la variable aléatoire égale au nombre
de fois où on obtient 6 quand on lance 10 fois un dé.
On lance 10 fois le dé, on obtient 2 six, X(ω) = 2 pour ce résultat ω.

— Lorsque Ω est dénombrable et que A = P(Ω), toute fonction de Ω dans E est une variable aléatoire,
il n’y a rien à vérifier de plus.

— Lorsque E = R, on parle de variable aléatoire réelle discrète.
— Lorsque X(Ω) est un ensemble fini, on parle de variable aléatoire finie.
— Une fonction constante sur Ω est une variable aléatoire finie. En effet, il existe a tel que X(Ω) = {a}.

On a (X = a) = Ω ∈ A.

Propriété 11

Soit X une variable aléatoire discrète sur (Ω, A) et à valeurs dans E.
Pour toute partie A de E, l’ensemble :

{X ∈ A} = (X ∈ A) = {ω ∈ A | X(ω) ∈ A} = X−1(A)

est un événement.

Dans la pratique, on ne revient pas aux ω.
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Par exemple, si on lance une pièce et que X est le temps d’attente du premier face, alors

(X ⩾ 5) =

Autre exemple. On lance trois fois un dé. X est la somme des numéros obtenus. On a

(X ⩽ 2) =

(X = 3) =

(X = 18) =

(X = 17) =

Propriété 12

Soit X une variable aléatoire discrète. La famille {(X = x)}x∈X(Ω) est un système complet d’évé-
nements, appelé système complet d’événements associé à X.

5.2 loi de probabilité

Définition - propriété 1 – loi de X

Soit X une variable aléatoire discrète sur l’espace probabilisé (Ω, A, P ). La loi de X est :

PX :
(

P(X(Ω)) → [0, 1]
A 7→ P (X ∈ A)

)

PX est une probabilité sur (X(Ω), P(X(Ω))).

Il s’ensuit que
P (X ∈ A) =

∑
x∈A

P (X = x)

et donc que la loi de X est déterminée par la distribution de probabilité discrète
(P (X = x))x∈X(Ω).

Réciproquement, la propriété suivante montre que toute probabilité discrète sur un ensemble peut être
considérée comme la loi d’une variable aléatoire discrète. C’est une propriété importante pour introduire
de nouvelles lois théoriques.

Propriété 13 – existence d’une variable aléatoire de distribution de probabilités donnée

Soit (px)x∈E une distribution de probabilités définie sur un ensemble E au plus dénombrable.
Il existe un espace probabilisé (Ω, A, P ) et une variable aléatoire discrète X de loi donnée par
(px)x∈E .

— Si une variable X suit une certaine loi de probabilité L, on note X ∼ L.
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— Deux variables X et Y ont même loi, et on note X ∼ Y , si PX = PY , c’est-à-dire si X(Ω) = Y (Ω)
et pour tout x ∈ X(Ω), P (X = x) = P (Y = x).

Dire que X ∼ Y ne présuppose pas que les variables X et Y sont définies sur le même univers, ni donc
que X = Y . Par exemple :

• Soit X une variable aléatoire suivant une loi de Rademacher, c’est-à-dire que

P (X = 1) = P (X = −1) = 1
2

On a X ∼ −X.
• Dans n lancers d’une pièce équilibrée, le nombre X de piles obtenus et le nombre Y de faces obte-

nues suivent la même loi mais ne sont pas égales.

Définition 11 – loi conditionnelle sachant un événement
Soit A un événement de probabilité non nulle et X une variable aléatoire discrète.
La loi conditionnelle de X sachant A est la loi de X dans l’espace probabilisé (Ω, A, PA). Elle est
donc déterminée par des probabilités PA(X = x) pour x ∈ X(Ω).

5.3 transformée d’une variable aléatoire
Définition - propriété 2

Pour X variable aléatoire discrète et f une application définie sur un ensemble contenant X(Ω),
f ◦ X est une variable aléatoire discrète, notée f(X).
Si X ∼ Y , alors f(X) ∼ f(Y ).

6 Lois usuelles

6.1 loi certaine
Définition 12

On dit que la variable aléatoire X suit la loi certaine ou qu’elle est presque sûrement constante s’il
existe a ∈ E tel que P (X = a) = 1.

6.2 loi uniforme
Définition - propriété 3

On dit que la variable aléatoire X suit une loi uniforme sur un ensemble fini E si :

X(Ω) = E et pour tout x ∈ E, P (X = x) = 1
Card E

Pour X ∼ U(J1, nK), X(Ω) = J1, nK et ∀k ∈ X(Ω), P (X = k) = 1
n .

Situation type : une urne contient n boules nu-
mérotées de 1 à n. On en prend une au hasard
et on note X le numéro tiré.

Une simulation en Python :

1 import numpy . random as rd
2 X = rd . rand int (1 , n+1)
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6.3 loi de Bernoulli
Définition - propriété 4

On dit que la variable aléatoire X suit la loi de Bernoulli de paramètre p ∈ [0, 1] si :

X(Ω) = {0, 1} et P (X = 1) = p

On note X ∼ b(p) ou X ∼ B(1, p).

Situation type
On tire une boule dans une urne avec n boules noires
et b boules blanches. X est le nombre de boules noires
obtenues en un tirage, X ∼ b(p) où p = n

b+n .

Une simulation en Python :

1 import numpy . random as rd
2 i f rd . random ( )<p :
3 X = 1
4 e l s e :
5 X = 0

Définition 13
Pour A événement, la variable aléatoire 1A, indicatrice de l’événement A :

1A(ω) =
{

1 si ω ∈ A

0 sinon

suit la loi de Bernoulli de paramètre p = P (A).

6.4 loi binomiale
Définition - propriété 5

On dit que X suit une loi binomiale de paramètres n ∈ N∗ et p ∈ [0, 1], et on note X ∼ B(n, p),
lorsque :

X(Ω) = J0, nK et P (X = k) =
(

n

k

)
pk(1 − p)n−k pour k ∈ J0, nK

Situation type
On réalise une succession de n épreuves de Bernoulli,
de probabilité de succès p ∈ [0, 1], indépendantes. La
variable aléatoire égale au nombre de succès obtenus
suit une loi binomiale de paramètres n et p.

Une simulation en Python :

1 import numpy . random as rd
2 X = rd . binomial (n , p )

Loi binomiale B(10, 1
2) Loi binomiale B(10, 1

5)
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6.5 loi géométrique

Définition - propriété 6

On dit que X suit une loi géométrique de paramètre p ∈]0, 1[, et on note X ∼ G(p), lorsque

X(Ω) = N∗ et ∀k ∈ N∗, P (X = k) = p(1 − p)k−1

Simulation en Python

1 import numpy . random as rd
2 X = rd . geometr ic (p)

Loi géométrique G(1/4)

Propriété 14 – modèle du temps d’attente

On réalise des épreuves de Bernoulli successives indépendantes de probabilité de succès p ∈]0, 1[.
Soit X la variable aléatoire égale au nombre d’épreuves nécessaires à l’obtention du premier succès.
On a X ∼ G(p).

Exercice 10 : Soit X ∼ G(p).
1. Montrer que

∀(m, n) ∈ N2, P[X>m](X > m + n) = P (X > n)

2. Si l’on pense à X comme à une durée, X ne tient pas compte du passé. On dit que la loi géométrique
est « sans mémoire », « sans vieillissement ». Illustrer ce propos avec des valeurs de n et m bien
choisies dans l’égalité précédente.

6.6 loi de Poisson
Définition - propriété 7

On dit qu’une variable aléatoire réelle discrète X suit une loi de Poisson de paramètre λ > 0, et
on note X ∼ P(λ), lorsque

X(Ω) = N et pour k ∈ N, P (X = k) = e−λ λk

k!
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Simulation en Python

1 import numpy . random as rd
2 X = rd . po i s son ( a )

Loi de Poisson P(3)

Exercice 11 : Loi des événements rares
1. Soit (Xn)n∈N∗ une suite de variables aléatoires discrètes telles que Xn suive la loi binomiale B(n, pn),

où lim
n→+∞

npn = λ > 0. Montrer que pour tout k ∈ N,

lim
n→+∞

P (Xn = k) = λke−λ

k!
Ainsi, si X suit une loi binomiale avec n grand et p proche de 0, X suit approximativement une loi
de Poisson de paramètre λ = np.

2. Expliquer, dans cette optique, pourquoi on peut modéliser par une loi de Poisson :
— le nombre de voitures se présentant à un péage pendant un laps de temps,
— le nombre de clients se présentant dans un magasin.

1 import numpy as np
2 n = 100
3 p = 0.04
4 a = n*p
5 de f f a c t o (k ) :
6 re turn np .math . f a c t o r i a l ( k )
7 de f b inomia le ( k ) :
8 c o e f f = f a c t o (n)/ f a c t o (k )/ f a c t o (n−k)
9 re turn c o e f f *p**k*(1−p) ** (n−k)

10 de f Poisson (k ) :
11 re turn np . exp(−a ) *a**k/ f a c t o (k )
12

13 k = np . arange (0 ,11 )
14 probas_B = [ binomia le ( i ) f o r i in k ]
15 probas_P = [ Poisson ( i ) f o r i in k ]
16 g1 = p l t . bar (k , probas_B , width=0 . 6 , c o l o r=’ l i g h t b l u e ’ )
17 g2 = p l t . bar (k , probas_P , width=0 . 1 , c o l o r=’ red ’ )
18 p l t . x l ab e l ( ’ k ’ )
19 p l t . y l ab e l ( ’P(X=k) ’ )
20 p l t . t i t l e ( ’ Loi ␣ b inomia le ␣approch é e␣par␣une␣ l o i ␣de␣Poisson ’ )
21 p l t . l egend ( [ g1 , g2 ] , [ ’ $\mathcal {B}(n , p) $ ’ , ’ $\mathcal {P}( a ) $ ’ ] )
22 p l t . show ( )
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7 Couples et uplets de variables aléatoires

7.1 couples de variables aléatoires discrètes

Un couple est une variable aléatoire à valeurs dans un produit. Le produit d’espaces au plus dénombrables
est au plus dénombrable, donc on reste bien dans le cadre de variables aléatoires discrètes.

Définition - propriété 8

Soient X, Y deux variables aléatoires discrètes définies sur un espace probabilisé (Ω, A, P ) et à
valeurs respectivement dans E et F . L’application (X, Y ) : Ω → E × F est une variable aléatoire
discrète, appelée loi conjointe de X et Y .
Donner la loi du couple (X, Y ), c’est donner X(Ω), Y (Ω), et les valeurs :

P (X = x, Y = y) = P ((X = x) ∩ (Y = y)) pour tout (x, y) ∈ X(Ω) × Y (Ω)

— Par la définition-propriété 2, à partir d’un couple de variables aléatoires discrètes, on a beaucoup
de variables aléatoires transformées : X + Y , XY , max(X, Y ),...

— La famille ((X = x) ∩ (Y = y))(x,y)∈X(Ω)×Y (Ω) est un système complet d’événements. On a∑
(x,y)∈X(Ω)×Y (Ω)

P (X = x, Y = y) = 1

— Réciproquement, des réels px,y forment les coefficients d’une loi de couple s’ils sont positifs et de
somme 1.

— Dans des exercices simples, on peut utiliser un tableau pour présenter les probabilités de la loi
conjointe.

Par la formule des probabilités totales appliquée avec le système complet d’événements ([Y = y])y∈Y (Ω),
on peut obtenir la loi (dite loi marginale) de X :

P (X = x) =
∑

y∈Y (Ω)
P (X = x, Y = y)

et de même, avec le système complet d’événements ([X = x])x∈X(Ω), on peut obtenir la loi marginale
de X :

P (Y = y) =
∑

x∈X(Ω)
P (X = x, Y = y)

La réciproque est fausse : avec les lois marginales, on ne peut pas reconstruire la loi conjointe.

Exercice 12 (B.E.O.) : Une secrétaire effectue, une première fois, un appel téléphonique vers n cor-
respondants distincts.
On admet que les n appels constituent n expériences indépendantes et que, pour chaque appel, la pro-
babilité d’obtenir le correspondant demandé est p (p ∈ ]0, 1[).
Soit X la variable aléatoire représentant le nombre de correspondants obtenus.

1. Donner la loi de X. Justifier.
2. La secrétaire rappelle une seconde fois, dans les mêmes conditions, chacun des n−X correspondants

qu’elle n’a pas pu joindre au cours de la première série d’appels. On note Y la variable aléatoire
représentant le nombre de personnes jointes au cours de la seconde série d’appels.
(a) Soit i ∈ J0, nK. Déterminer, pour k ∈ N, P(X=i)(Y = k).
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(b) Prouver que Z = X + Y suit une loi binomiale dont on déterminera le paramètre. Indication :
on pourra utiliser, sans la prouver, l’égalité suivante :(

n − i

k − i

)(
n

i

)
=
(

k

i

)(
n

k

)

(c) Déterminer l’espérance et la variance de Z.

Définition 14

Soient X, Y deux variables aléatoires discrètes définies sur un espace probabilisé (Ω, A, P ) et à
valeurs respectivement dans E et F .
Les variables aléatoires X et Y sont indépendantes si pour toute partie A de E et toute partie B
de F , les événements (X ∈ A) et (Y ∈ B) sont indépendants.

Propriété 15 – caractérisation de l’indépendance

Les variables aléatoires discrètes X et Y sont indépendantes si et seulement si

pour tout (x, y) ∈ X(Ω) × Y (Ω), P (X = x, Y = y) = P (X = x) P (Y = y)

Cela peut se reformuler en P(X,Y ) = PX × PY .

Exercice 13 :
1. On lance 100 fois une pièce. Soit X la variable aléatoire égale au nombre de Face obtenu et Y la

variable aléatoire égale au nombre de Pile obtenu. X et Y sont-elles indépendantes ?
2. On lance indéfiniment une pièce. Soit X la variable aléatoire égale au rang du premier Pile obtenu,

Y la variable aléatoire égale au rang du premier Face obtenu et Z la variable aléatoire égale au
rang du deuxième Pile obtenu. X et Y sont-elles indépendantes ? X et Z sont-elles indépendantes ?

Exercice 14 : Soient X et Y deux variables aléatoires indépendantes et de même loi géométrique de
paramètre p. Calculer P (X = Y ), P (X ⩾ Y ), P (X ⩾ 2Y ).

Propriété 16 – transfert d’indépendance

Si X et Y sont deux variables aléatoires discrètes indépendantes, alors pour toute fonction f
définie sur X(Ω) et pour toute fonction g définie sur Y (Ω), les variables aléatoires f(X) et g(Y )
sont indépendantes.

Par exemple, l’indépendance de X et Y entraîne celle de X2 et Y 2.

7.2 familles finies de variables aléatoires discrètes

On étend sans difficulté les définitions et résultats précédents aux n-uplets de variables aléatoires :
• Si pour tout i ∈ J1, nK, Xi est une variable discrète sur (Ω, A, P ) à valeurs dans un ensemble Ei,

alors X = (X1, . . . , Xn) est une variable discrète à valeurs dans E1 × · · · × En.
• La loi de X est appelée loi conjointe et les lois des variables Xi sont appelées lois marginales.
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• Chaque loi marginale se retrouve à partir de la loi conjointe.
En posant Fi = E1 × · · · × Ei−1 × Ei+1 × · · · × En,

∀i ∈ J1, nK, ∀t ∈ Xi(Ω), P (Xi = t) =∑
(x1,...,xi−1,xi+1,...,xn)∈Fi

P (X1 = x1, . . . , Xi−1 = xi−1, Xi = t, Xi+1 = xi+1, . . . , Xn = xn)

Définition - propriété 9

Soit (Xi)1⩽i⩽n une famille finie de variables aléatoires discrètes définies sur (Ω, A, P ). Les variables
sont dites (mutuellement) indépendantes si on a l’une des deux assertions équivalentes suivantes :

1. Pour tout (x1, . . . , xn) ∈ X1(Ω) × · · · × Xn(Ω), P (X1 = x1, . . . , Xn = xn) =
n∏

i=1
P (Xi = xi).

2. Pour tout (A1, . . . , An) ∈ E1 × · · · × En, les événements (X1 ∈ A1), . . . , (Xn ∈ An) sont
mutuellement indépendants.

L’indépendance mutuelle implique l’indépendance deux à deux, mais la réciproque est fausse.

Propriété 17 – lemme des coalitions

Si (X1, X2, . . . , Xn) sont indépendantes, toute variable aléatoire fonction de X1, X2, . . . , Xp est
indépendante de toute variable aléatoire fonction de Xp+1, Xp+2, . . . , Xn.

On peut généraliser à plusieurs coalitions.
Pour (X1, X2, . . . , Xn) indépendantes, p ∈ J1, nK, 1 ⩽ i1 < i2 < · · · < ip ⩽ n, et f1, f2, . . . , fp fonctions,
les variables aléatoires :

f1(X1, X2, . . . , Xi1), f2(Xi1+1, . . . , Xi2), . . . , fp(Xip−1+1, . . . , Xip)

sont indépendantes.
Exemple : si (X1, X2, X3, X4) sont indépendantes, alors :

— X1 + X2 + X3 et X4 sont indépendantes
— (X1 + X2, X3, eX4) sont indépendantes
— le lemme des coalitions ne peut pas s’appliquer pour juger de l’indépendance de

(X1 + X2, X3, X4 − X2).

Autre exemple : on considère des variables aléatoires X1, X2, . . . , Xn indépendantes suivant la loi uniforme
sur J1, 9K. On pose, pour tout k ∈ J1, nK :

Yk =
{

1 si Xk = 1
0 si Xk ∈ J2, 9K

Par le lemme des coalitions (ou bien, là, tout simplement un transfert d’indépendance), Y1, Y2, . . . , Yn

sont indépendantes.

7.3 suites de variables aléatoires discrètes

On considère une suite (Xn)n∈N de variables aléatoires sur un espace probabilisé (Ω, A, P ).
• Les variables Xn sont indépendantes si toute sous-famille (Xi)i∈I avec I partie finie de N est

constituée de variables aléatoires indépendantes.
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• Si les variables Xn suivent de plus toutes la même loi, on dira que la suite est une suite de variables
indépendantes et identiquement distribuées ou, en abrégé, une suite de variables i.i.d.

Théorème 2 – théorème d’extension de Kolmogorov - admis

Soit (Ln)n∈N une suite de lois discrètes sur des ensembles En. Il existe un espace probabilisé
(Ω, A, P ) et une suite (Xn)n∈N de variables aléatoires indépendantes telles que pour tout n,
Xn ∼ Ln.

Pour nous, ce théorème sert uniquement à légitimer certains énoncés. Par exemple, il permet de donner un
cadre théorique au jeu de pile ou face infini. En effet, on peut affirmer l’existence d’un espace probabilisé
pour lequel il existe une suite de variables aléatoires indépendantes suivant une loi de Bernoulli de
paramètre p donné (1/2 si la pièce lancée est équilibrée).
Plus généralement, ce théorème valide, dans un énoncé, toute formulation de la forme : « On considère
une suite (Xn)n∈N de variables aléatoires indépendantes et identiquement distribuées, de loi ... ».
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8 Annexe : quelques éléments de démonstrations
Propriété 2

1. Ω = A ∪ A et l’union est disjointe. Donc 1 = P (A) + P (A).
2. Si A ⊂ B, B est l’union disjointe de A et B ∩ A (faire un schéma) donc P (B) = P (A) + P (B \ A).

P (B \ A) = P (B) − P (A) et ainsi P (A) ⩽ P (B).
3. A ∪ B est l’union disjointe de A et B ∩ A, donc P (A ∪ B) = P (A) + P (B ∩ A).

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

Théorème 1
(i) Soit (An) une suite croissante d’événements. On pose (faire un dessin) :

B0 = A0 et Bn = An ∩ An−1 pour n ⩾ 1

• Les Bn sont 2 à 2 incompatibles :
pour j > i ⩾ 0, Ai ⊂ Aj−1 donc Aj−1 ∩ Ai = ∅. Donc pour i ⩾ 1, Bi ∩ Bj = Ai ∩ Ai−1 ∩ Aj ∩ Aj−1 = ∅ et
B0 ∩ Bj = A0 ∩ Aj ∩ Aj−1 = ∅.

• On a vu plus haut que P (Bn) = P (An) − P (An−1), d’où
N∑

n=0
P (Bn) = P (A0) +

N∑
n=1

P (An) − P (An−1) = P (AN ).

Par ailleurs P (
∞⋃

n=0
Bn) =

∞∑
n=0

P (Bn) = lim
N→+∞

N∑
n=0

P (Bn).

La conclusion vient du fait que
∞⋃

n=0
Bn =

∞⋃
n=0

An. En effet,
N⋃

n=0
Bn =

N⋃
n=0

An, ∀N .

Soit maintenant (An) une suite décroissante d’événements. La suite (An) est croissante, et par ce qui précède

P (
∞⋃

n=0
An) = lim P (AN ) Par les lois de Morgan,

∞⋃
n=0

An =
∞⋂

n=0
An et on obtient

1 − P (AN ) → 1 − P (
∞⋂

n=0

An)

Corollaire 1
(i) posons Bn =

n⋃
k=0

Ak. La suite (Bn) est croissante, montrons que
∞⋃

n=0
An =

∞⋃
n=0

Bn, ainsi nous aurons par la propriété

précédente

P (
∞⋃

n=0

An) = P (
∞⋃

n=0

Bn) = lim
n→+∞

P (Bn) = lim
n→+∞

P (
n⋃

k=0

Ak)

Comme Ak ⊂ Bk, ∀k, on a
∞⋃

n=0
An ⊂

∞⋃
n=0

Bn. Comme ∀n, Bn ⊂
∞⋃

k=0
Ak, on a

∞⋃
n=0

Bn ⊂
∞⋃

n=0
An.

(ii) Notons Cn = An.

P (
∞⋂

n=0
An) = P (

∞⋃
n=0

Cn) = 1−P (
∞⋃

n=0
Cn) = 1− lim

n→+∞
P (

n⋃
k=0

Ck) = lim
n→+∞

1−P (
n⋃

k=0
Ck) = lim

n→+∞
P (

n⋃
k=0

Ck) = lim
n→+∞

P (
n⋂

k=0
Ak).

Propriété ?? de sous-additivité
• Cas I = J0, nK. Par récurrence.
• Cas I = N. Par le premier cas, pour tout n ∈ N,

P (
n⋃

k=0

Ak) ⩽
n∑

k=0

P (Ak)

et par le corollaire du théorème de continuité monotone, quand on fait tendre n vers +∞, on a le résultat.
• Dans le cas général, I au plus dénombrable est en bijection avec J0, nK ou N. Il existe φ bijection d’un de ces deux
ensembles, mettons N, dans I. Introduire φ, c’est effectuer un changement d’indices.

P (
⋃
i∈I

Ai) = P (
⋃
k∈N

Aφ(k)) ⩽
∑
k∈N

P (Aφ(k)) =
∑
i∈I

P (Ai)

Propriété 4
Je peux prendre I = N pour simplifier.
Posons C =

⋃
i∈I

Ai. Par hypothèse, P (C) = 1.∑
i∈I

P (Ai ∩ B) = P (
⋃
i∈I

Ai ∩ B) par σ − additivité

= P (C ∩ B) = P (B) − P (C ∩ B)
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Mais par croissance, P (C ∩ B) ⩽ P (C) = 0.

Propriété 5
Soit (Ai)i∈I , avec I au plus dénombrable, des ensembles négligeables. Par sous-additivité de P , on a

P (
⋃
i∈I

Ai) ⩽
∑
i∈I

P (Ai) = 0

et donc
⋃
i∈I

Ai est négligeable.

Soit (Bi)i∈I , avec I au plus dénombrable, des ensembles presque sûrs. Les Bi sont négligeables. Par ce qui précède,

P (
⋂
i∈I

Bi) = 1 − P (
⋃
i∈I

Bi) = 1 − 0 = 1

Propriété 6
Soit B ∈ A.
On a 0 ⩽ PA(B), PA(Ω) = 1 et comme A ∩ B ⊂ A, on a P (A ∩ B) ⩽ P (A), puis PA(B) ⩽ 1.
Soit (An) une suite d’événements deux à deux incompatibles. On a :

PA(
⋃
n∈N

An) =
P (A ∩ (

⋃
n∈N

An))

P (A) =
P (
⋃

n∈N
(An ∩ A))

P (A)
∗=

∑
n∈N

P (A ∩ An)

P (A) =
∑
n∈N

PA(An)

(∗) vient de : P est une probabilité et (A ∩ An)n∈N est une suite d’événements incompatibles.

Propriété 9
P (A ∩ B) = P (A) − P (A ∩ B) = P (A)(1 − P (B)) = P (A)P (B)

Propriété 10
Soit Ω au plus dénombrable et (pω)ω∈Ω une distribution de probabilités discrète.
Unicité
Si P est une probabilité sur P(Ω) vérifiant : P ({ω}) = pω pour tout ω, déterminons P .
Soit A ∈ P(Ω). Comme sous-ensemble d’un ensemble au plus dénombrable, A est au plus dénombrable. La σ-additivité de
P s’applique :

P (A) = P (
⋃

ω∈A

{ω}) =
∑
ω∈A

P ({ω}) =
∑
ω∈A

pω

et P est unique.

Existence

Introduisons P :

(
P(Ω) → R
A 7→

∑
ω∈A

pω

)
et montrons que P est une application probabilité (on a bien P ({ω0}) = pω0).

• Comme les pω sont positifs, P (1) ⩾ 0 et P (A) ⩽
∑

ω∈Ω
pω = 1. P est à valeurs dans [0, 1].

• On a bien P (Ω) =
∑

ω∈Ω
pω = 1.

• Soit (An)n∈N une suite d’événements deux à deux incompatibles. On pose A =
⋃

n∈N
An. Par le théorème de sommation

par paquets, ∑
ω∈A

P ({ω}) =
+∞∑
n=0

∑
ω∈An

P ({ω})

et donc P (A) =
+∞∑
n=0

P (An). P est σ-additive.

Propriété 11
Remarque : l’écriture X−1(A) =

⋃
ω∈Ω/ X(ω)∈A

(X = x) bloque puisque Ω n’est pas supposé dénombrable.

On remarque plutôt que :
X−1(A) = {ω ∈ Ω/ X(ω) ∈ A ∩ X(Ω)} =

⋃
x∈A∩X(Ω)

(X = x)

Comme X(Ω) est au plus dénombrable, il s’agit là d’une union au plus dénombrable d’événements, donc c’est un événement.

Propriété 13
Soit (px)x∈E des réels positifs de somme 1.
On considère F le support de cette famille : F = {x ∈ E | px > 0}. On a vu que F était dénombrable. La famille (px)x∈F
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est sommable et
∑

x∈F

px =
∑

x∈E

px = 1. Donc (px)x∈F est une distribution de probabilités sur F .

On prend Ω = F , A = P(F ) (car F est au plus dénombrable) et P la probabilité associée à la distribution de probabilités
discrète (px)x∈F , à savoir :

∀A ∈ P(F ), P (A) =
∑
x∈A

px

On prend enfin X = IdF .

On a X(Ω) = F au plus dénombrable.
Pour x ∈ F , X−1({x}) = {x} ∈ A.
Donc X est une variable aléatoire discrète telle que X(Ω) ⊂ E. Enfin pour x ∈ E,

P (X = x) =
{

P ({x}) = px si x ∈ F

P (∅) = 0 = px si x ̸∈ F

Définition-propriété 2
(f ◦ X)(Ω) = f(X(Ω)) est l’image par f d’un ensemble au plus dénombrable, donc est au plus dénombrable.
Pour y ∈ f ◦ X(Ω), on a

(f(X) = y) = {ω ∈ Ω | f(X(ω)) = y} = {ω ∈ Ω | X(ω) ∈ f−1({y})} = (X ∈ f−1({y})) ∈ A

Donc f(X) est une variable aléatoire.
Soient maintenant X et Y définies sur les espaces probabilisés (Ω, A, P ) et (Ω′, A′, P ′) respectivement. On suppose que
X ∼ Y , donc X(Ω) = Y (Ω) et pour x dans cet ensemble, P (X = x) = P ′(Y = x).
On a f(X(Ω)) = f(Y (Ω)) et pour y dans cet ensemble,

P (f(X) = y) =
∑

x∈f−1({y})

P (X = x) =
∑

x∈f−1({y})

P ′(X = y) = P ′(f(Y ) = x)

Propriété 14
Considérons les événements Sk « on obtient un succès au ke lancer » et Ek « on obtient un échec au ke lancer ».
On a (X = n) = E1 ∩ E2 ∩ ... ∩ En−1 ∩ Sn et

P (X = n) = P (E1 ∩ ... ∩ En−1 ∩ Sn)
= P (E1) × ... × P (En−1) × P (Sn) car ces événements sont indépendants
= (1 − p)n−1p

Dans le modèle proposé, X peut a priori prendre la valeur +∞. Montrons que P (X = +∞) = 0.

(X = +∞) =
+∞⋂
k=1

Ek

P (
n⋂

k=1

Ek) = qn

P (X = +∞) = lim qn = 0 par continuité décroissante

Remarque : On a P (X ∈ N∗) = P (
∞⋃

k=1
(X = k)) =

∞∑
k=1

p(1 − p)k−1 = p
(1−(1−p)) = 1. X est donc presque-sûrement à valeurs

dans N∗.
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