Les attentes

Topologie des espaces vectoriels normés
— Espaces vectoriels normés, deuxieme partie —

1. Savoir définir : « U est un ouvert de E ». Savoir définir un fermé, et
connaitre la caractérisation par les suites.

2. Propriétés sur les ouverts et les fermés.

3. Savoir montrer qu'un ensemble est ouvert / fermé avec le théoréme
de I'image réciproque.

4. Continuité d’une application définie sur F'; caractérisation séquen-
tielle.

5. Cas particulier des applications linéaires : critere de continuité.
Norme d’opérateur ou norme subordonnée. Sous-multiplicativité
d’une norme d’opérateur.

6. Critere de continuité des applications multilinéaires.

(o] g .y

7. Savoir définir : « K est un compact ». Propriétés (!).

8. Théoréme des bornes atteintes.

9. Les apports de la dimension finie :

— Equivalence des normes en dimension finie.

— Une partie d’'un espace normé de dimension finie est compacte
si, et seulement si, elle est fermée et bornée.

— Théoréme de Bolzano-Weierstrass.

— Un sous-espace de dimension finie d’un espace normé est fermé.

— Si E est de dimension finie, Z(F, F) = Z.(E, F'). Continuité
des applications polynomiales définies sur un espace normé
de dimension finie, des applications multilinéaires définies
sur un produit d’espaces vectoriels normés de dimensions finies.

1. Définitions : intérieur, adhérence, frontiere.

2. Partie dense.

3. Applications uniformément continues. Théoréme de Heine.

4. Démonstrations formatrices : une boule ouverte est un ouvert.

5.  — Dans un espace vectoriel normé, chemin (ou arc) joignant deux

points ; partie connexe par arcs.

— Relation d’équivalence associée sur une partie A de E. Les
classes sont les composantes connexes par arcs.

— Cas des parties convexes, des parties étoilées.
— Les parties connexes par arcs de R sont les intervalles.

— Image continue d’une partie connexe par arcs. Cas particulier
des applications a valeurs réelles : théoreme des valeurs
intermédiaires.

Ce chapitre fait suite au chapitre Espaces vectoriels normés. K désigne R ou C et (E,||.||) désigne
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un K-espace vectoriel normé. Les notions topologiques que nous allons présenter ne sont pas modifiées
lorsqu’on passe d’une norme & une norme équivalente. En particulier, si I'espace E est de dimension finie,
elles ne dépendent pas de la norme choisie.

1 Notions topologiques

1.1 voisinages, ouverts, fermés

Révisions : soit @ € E et r > 0. On appelle :
o boule ouverte de centre a et de rayon r, 'ensemble B(a,r) ={x € E | ||z —al <7}.
o boule fermée de centre a et de rayon r, 'ensemble  Bf(a,r7) ={x € E | |z —a| <7}

o spheére de centre a et de rayon 7, 'ensemble  S(a,r) ={zx € E | ||z —al =r}.

—[ Définition 1 }

Soient A une partie de F et x un élément de E . On dit que :

o A est un voisinage de z s’il existe r > 0 tel que B(z,r) C A.

o A est un ouvert de E si A est un voisinage de chacun de ses points, c’est-a-dire si :
Ve € A, Ir >0, B(z,r) C A

o A est un fermé de E si son complémentaire est un ouvert.

On remarque que F et () sont des ouverts et des fermés de E.

La partie dessinée plusieurs fois ci-contre est :
— un ouvert si on la considére sans son contour,
— un fermé si on la considére avec son contour,

— ni un ouvert ni un fermé si on la considére avec une
partie de son contour.

,_' Propriété 1 !

Une boule ouverte est un ouvert. Une boule fermée est un fermé.

,_' Propriété 2 !

Toute union d’ouverts est un ouvert. Une union finie de fermés est un fermé.
Une intersection finie d’ouverts est un ouvert. Toute intersection de fermés est un fermé.
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Exemple : dans R, l'intervalle ]2,4[= {z € R, |z — 3| < 1} est la boule ouverte de centre 3 et rayon 1;
c’est un ouvert.

Remarques :

— L’exemple de

AL

neN*
montre qu’une intersection quelconque d’ouverts n’est pas forcément un ouvert.
— La sphere S(a,r) est un fermé comme intersection des fermés By(a,r) et E \ B(a,r).
Les spheéres sont des fermés.

Plus généralement, dans R muni de la valeur absolue,
Ja, 0]
Ja, +o0]

]—oo,b[

|a, b] n’est ni un ouvert ni un fermé

[a, ] n’est ni un ouvert ni un fermé

,_[ Propriété 3 — produit d’ouverts ]

Soient E7, ..., E, des K-espaces vectoriels normés. On munit I’espace produit Fq X --- x E, de la
norme produit.
e SiUi,...,U, sont des ouverts de Ey, ..., E, respectivement, alors Uy X - - - X U, est un ouvert
de Fq x --- x B,
e SiUi,...,U, sont des fermés de F, ..., E, respectivement, alors Uy x - -- x U, est un fermé

de E1 X --- X E).

Par exemple,

0,1] x RT

| — 1, 400[xRx]0, 1]
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La définition d’une partie fermée n’est pas facile & manier. On dispose cependant d’une caractérisation
pratique : pour montrer qu’une partie A est fermée, il suffit de montrer que toute suite convergente de A
a sa limite dans A. Autrement dit, A est fermée lorsqu’on ne sort pas de A par passage a la limite!

On rappelle que, par définition, u,, — £ lorsque

Propriété 4 — caractérisation séquentielle des fermés ]

Une partie A de E est fermée si, et seulement si, toute suite convergente d’éléments de A a sa
limite qui appartient a A.

Exercice 1 : En utilisant la caractérisation séquentielle des fermés :

1. montrer que les singletons de F sont des fermés de E (les parties finies sont alors des fermés en
tant que réunion finie de fermés),

2. montrer que l'intervalle [0, 1[ n’est pas un fermé de R,
3. montrer que 'orthogonal d’un sous-espace vectoriel d’un espace préhilbertien réel est un fermé,

4. montrer que C°(R, R) est un fermé de B(R, R) (espace vectoriel des fonctions bornées) pour la norme

I-foo-

1.2 intérieur, adhérence, frontiere

—|{ Définition 2 }

Soient A une partie de F et = un élément de E.

o x est un point intérieur a A s’il existe r > 0 tel que B(z,r) C A, c’est-a-dire si A est un
voisinage de x.

o x est un point adhérent & A si pour tout r > 0, B(x,r) N A # (.

/ Ici un point adhérent

Ici un point intérieur
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—[ Définition 3 }

Soit A une partie de E.

e On appelle intérieur de A et on note A Pensemble des points intérieurs & A.
e On appelle adhérence de A et on note A I’ensemble des points adhérents & A.

« On appelle frontiére de A et on note Fr(A), lensemble A \ A.

Ensemble A Intérieur de A Adhérence de A Frontiére de A

;escccscccccccccee -
0 ..

,_‘ Propriété 5 ! <

o L’intérieur de A est un ouvert de F, c’est le plus grand des ouverts inclus dans A.

o L’adhérence de A est un fermé de E, c’est le plus petit des fermés contenant A.

e La frontiere de A est un fermé de FE.

Ona AcCcAcCA

Il s’ensuit que A est un ouvert si et seulement si A= A, et que A est fermé si et seulement si A = A.

,_[ Propriété 6 — caractérisation séquentielle des points adhérents }

Un point « de E est adhérent a A si et seulement s’il existe une suite d’éléments de A convergeant
vers .

Reformulons : 'adhérence de A est ’ensemble des limites des suites convergentes a valeurs dans A.

Par exemple, la matrice nulle est adhérente & GL,(K) car les matrices %Ir sont inversibles et tendent
vers la matrice nulle.

Exercice 2 (B.E.O.) : Montrer que si A C B, alors A C B.

Propriété 7

Si lespace vectoriel E est muni de deux normes N et N’ équivalentes, alors (E, N) et (E, N’) ont
les mémes voisinages, ouverts, fermés, intérieurs et adhérences.
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1.3 parties denses dans F

—[ Définition 4 }

On dit que A est une partie dense dans FE quand 'adhérence de A est égale a F.

— Dans le chapitre Suites et séries de fonctions, nous avons vu que l’ensemble des fonctions en
escalier sur [a, b] était dense dans (CM ([a, b, F'), ||.|lcc) ol F" est un espace vectoriel de dimension
finie, et que ensemble des fonctions polynomiales était dense dans (C([a, b, K), ||.||cc)-

— En premiére année, vous avez vu que : Q et R\ Q sont denses dans R.

N Exercice 3 : Montrer que GL,(K) est dense dans M,,(K).

1.4 topologie relative a une partie

On voudrait ici avoir de « bons voisinages » lorsqu’on modifie (légeérement) ’ensemble de travail. Par
exemple, on congoit que si [0,e] n’est pas un voisinage de 0 dans R, il a une bonne téte pour étre
voisinage de 0 dans RT. Nous admettons les équivalences dans les définitions suivantes, dans lesquelles
A est une partie de E (pas forcément un espace vectoriel, donc) et a € A.

— Définition 5 |

On dit qu'une partie V' de A est un voisinage relatif de a dans A quand c’est I'intersection d’un
voisinage de a dans E avec A.

V=ANVY avec V voisinage de a dans F

,_[ Définition - propriété 1 ]

On dit qu’une partie 2 de A est un ouvert relatif de A quand €2 est voisinage relatif de chacun de
ses points, ou de maniére équivalente, si {2 est I'intersection d’un ouvert de E avec A :

Q=ANU aveclU ouvert de E

,_[ Définition - propriété 2 ]

On dit qu’'une partie F' de A est un fermé relatif de A quand c’est le complémentaire dans A d’un
ouvert relatif de A, ou de maniere équivalente, si F' est I'intersection d’un fermé de E avec A :

F=ANF avec F fermé de FE

Par exemple,

1
[0, 5[ est un ouvert relatif de [0, 1] car

]0,3]  est un fermé relatif de R™ car
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2 Etude locale d’une application dans un espace vectoriel normé,
continuité

E et F sont des espaces vectoriels normés et f est une application de A C E dans F.

Toutes les propriétés vues dans cette section restent inchangées si on remplace les normes des espaces
vectoriels normés considérés par des normes équivalentes. En particulier, elles ne dépendent pas du choix
de la norme lorsque les espaces sont de dimension finie. Dans la pratique, on va s’intéresser a :

— des fonctions numériques d’une ou plusieurs variables réelles
— des fonctions d’une variable complexe (conjugaison z — Z, exponentielle complexe z — €7,...)

— aux applications d'une variable matricielle, par exemple det : A — det(A), A+~ A~ applications
linéaires ou multilinéaires...

2.1 limite
,_[ Définition - propriété 3 }

Soit f:ACE —F,acAet{c F.Ondit que f a pour limite £ en a si :

Ve>0,3da>0,Vz e A, |z—a|<a=|f(z)—"{|<e

Lorsqu’elle existe, la limite est unique.

On note lignf =/, ou %13; f(z) = ¢ ou encore f(x) - L.

On aurait pu présenter la définition avec des inégalités larges. On peut reformuler :

f admet pour limite £ en a si pour tout voisinage V de ¢, il existe un voisinage U de a relatif a A tel que
fo)ycv

ou encore en termes de boules : Ve >0, 3a >0, Vz € B(a,a) N A, f(z) € B({,¢).

Dans toute la suite, f : A C E — F et a € A. La propriété suivante va permettre d’utiliser les ré-
sultats obtenus sur les suites dans un espace vectoriel normé pour établir de nombreuses propriétés sur
les limites.

Propriété 8 — caractérisation séquentielle de la limite }

L’application f admet pour limite ¢ en a si, et seulement si, pour toute suite (u,) d’éléments de
A tendant vers a, on a lim f(u,) = /.

En conséquence, on a facilement les propriétés :
— limite d’une combinaison linéaire : lign(/\ f+ng) = )\li(gn f+ ,ulién g
— limite d’une composée
— le théoreme d’encadrement : si ||f(x) — ¢|| < g(z) et licrlng =0, alors li(tlnf =/
— pour des fonctions & valeurs réelles, on peut passer a la limite dans une inégalité large

— pour des fonctions a valeurs complexes, on peut faire le produit de limites, et on peut faire le
quotient de limites si la limite au dénominateur est différente de 0

— on peut raisonner par composantes dans un espace produit d’espaces vectoriels normés
(filx),..., fp(z)) — (41,...,Lp) équivaut a Vi € 1, p], liOILn fi=4;.

—a

En particulier, dans R?, (x,3) — (a,b) si et seulement si (z — a, y — b).
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Exercice 4 : On se méfie de la gestion de doubles limites...

Calculer lim lim (1—1)?et lim lim (1— 1)
n——+o00 p——+00 n p——+00 n——+00 n

2?2 < 2?4 o2
) ) , donc
ye <t +y
et on a I'inégalité classique
Exercice 5 :

1. Calculer lim 2% — 3y + ay.
(z,y)—(1,2)

2
2. Calculer lim -4,
(29)—(0,0) TV
3. Calculer lim Iy,
(z,y)—(0,0) Va*+y?
4. Montrer a I'aide de la caractérisation séquentielle de la limite que

(0,0).

x—l—yg

premur n’admet pas de limite en

,_[ Définition 6 — extension — limite infinie pour une fonction réelle }

Soit f: A C E — R et a un point adhérent a A.

e On dit que f tend vers +o00 en a si :

VM eR, Ja>0,Vx € A, |[zr—a|| <a = flz) > M
e On dit que f tend vers —oo en a si :

VM eR, Ja>0,Vx € A, |[r—a|| <a = flz) <M

Définition 7 — extension — limite quand ||z| — +oo ‘

Soit f: A C E — F avec A partie non bornée.
On dit que f tend vers ¢ quand ||z| — 400 si :

Ve>0, 3K eRT, Ve A, |z]| > K = ||f(z)— (|| <e

On note lim f(z)="~¢.
[l]| =00

,_[ Définition 8 — extension — limite en 400 quand A C R ]

o Si —oo est adhérent & A (cas o A n’est pas minorée), on dit que f tend vers £ en —oo si :
Ve>0,dK eR, Vz e A, < K = ||f(z)—{|| <e
o Si +oo est adhérent & A (cas ou A n’est pas majorée), on dit que f tend vers £ en +o0 si :

Ve>0,dK eR, Ve e A, 2 2 K = ||f(z)—{|| <e
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Je vous laisse définir, quand f est a valeurs réelles, lim f(z) =+4+occet lim f(z)= —o0.
]| —+o0 [lf|—+o00

On peut également donner une caractérisation séquentielle de la limite dans chacun de ces cas, avec les
conséquences qui en découlent.

Exercice 6 :

1
1. Dans C, calculer lim .
|2|—+c0 2 + 1

2. Dans C, pour P polynéme non constant, montrer que | |lim |P(2)| = +oc.
Z|—+00

2.2 continuité

— Définition 9 |

Soit f une application d’une partie D de E a valeurs dans F'.

o Lorsque a appartient a D, on dit que f est continue au point a quand %ugb f(x) = f(a).
e On dit que f est continue sur D quand elle est continue en tout point de D.

e Lorsque a n’appartient pas a D et que f admet une limite £ en a, on dit que f se prolonge
par continuité en a.

Les résultats établis sur les limites nous apportent la continuité : d’une combinaison linéaire d’applications
continues, du produit d’une application continue avec une application scalaire continue, de la composée
d’applications continues, et dans le cas d’une fonction a valeurs dans K, de l'inverse d’une fonction
continue ne s’annulant pas.

Nous avons aussi la caractérisation séquentielle de la continuité : f est continue en a si pour toute suite
(z,,) d’éléments de A tendant vers a, la suite (f(z,)) tend vers f(a).

,_' Propriété 9 !

Deux applications continues qui coincident sur une partie dense sont égales.

. J

— Définition 10 }

Soit £ = 0. On dit que 'application f est k-lipschitzienne ou lipschitzienne de rapport & si :

V(w,y) € A%, |If () = F)Il < kllz —y

Cette définition dépend des normes utilisées dans E et F'. Mais des normes équivalentes définissent les
mémes applications lipschitziennes (pas forcément de méme rapport).

Propriété 10 }

Toute application lipschitzienne est continue. ]

Exercice 7 : Montrer la continuité des applications suivantes (vous comprendrez tout seuls les ensembles)

(1,...,2n) =z, 2+ Re(z) et z—=1Im(z), A a;
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Propriété 11 — %\f exercice classique }

Soit (E, ||.||) un espace vectoriel normé. Les applications z +— ||z|| et  — d(x, A) sont
1-lipschitziennes donc continues sur F.

Application : si f est continue, x — || f(z)|| est continue, comme composée des applications f et y — ||y]|.

2.3 continuité uniforme

La définition suivante généralise la notion de continuité uniforme déja vue en premiere année pour les
fonctions d’une variable réelle. Vous avez notamment rencontré le théoreme de Heine (que dit-il?), sur
lequel nous reviendrons plus loin.

,_[ Définition - propriété 4 }

On dit que f est uniformément continue si :

Ve >0, In>0,V(z,y) € A2, [lz—yl| <n = ||f(x)— f)l <e

On peut énoncer la définition avec des inégalités strictes ou larges.

,_[ Propriété 12 }

On a les implications :

[ f lipschitzienne } =>[ f uniformément continue j =

Les réciproques sont fausses.

2.4 images réciproques et continuité

,_[ Propriété 13 } <

Soit f: A C E — F une application continue.

e L’image réciproque par f de tout ouvert de F' est un ouvert relatif de A.

e L’image réciproque par f de tout fermé de F' est un fermé relatif de A.

En particulier, pour f : E — F continue, I'image réciproque d’un ouvert est un ouvert de FE,
I’image réciproque d’un fermé est un fermé de F.

Ce résultat est tres utile pour montrer qu'une partie est ouverte/fermée. Par exemple, si ¢ : E — R
est continue, alors :

{x € B, p(z) >0} = p1(]0,400]) est un ouvert ; {z € E, p(z) >0} = ¢ ([0, +-00]) est fermé ;

{z € E,p(z) =0} = ¢ 1({0}) est fermé.

Exercice 8 : Montrer que {(z,y) € R?, —1 < 2 <y < 1} est un fermé de R2. Le représenter.

Exercice 9 : Exercice récapitulatif. Montrer de trois fagons que Z est un fermé de R :
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1. par la définition d’un fermé,
2. par la caractérisation séquentielle des fermés,

3. en tant qu’image réciproque d’un fermé par une application continue (on pourra penser a une
fonction trigonométrique).

3 Applications linéaires et multilinéaires continues et normes d’opé-
rateurs

3.1 critere de continuité des applications linéaires

,_[ Propriété 14 — critere de continuité des applications linéaires ]

Soit u : £ — F' une application linéaire. u est continue si et seulement s’il existe C' réel positif tel
que
Ve e B, lu(z)] <Oz

On peut reformuler ce théoreéme : pour qu'une application linéaire soit continue, il faut et il suffit qu’elle
soit lipschitzienne, qu’elle soit uniformément continue, qu’elle soit bornée sur la boule unité. Je vous laisse
y réfléchir !

Méthode — justifier la continuité (ou non) d’une application linéaire

On peut :

o regarder la dimension de E. Nous verrons que lorsque E est de dimension finie, toute appli-
cation linéaire de E dans F' est continue.

o majorer ||u(z)|| afin de trouver C' tel que pour tout = € E, ||u(z)| < C|lz| et appliquer le
critére de continuité des applications linéaires.

e raisonner par I’absurde en supposant que wu satisfait le critére de continuité des applications
linéaires et trouver une suite (z,) rendant absurde I'inégalité ||u(x,,)| < C|lz,|| (souvent, en
faisant tendre n vers l'infini).

Exercice 10 : Soit I'application linéaire w : < E=c(0,1K) - K )

f = f(1)
1. Montrer que si on munit E de la norme |||/, alors u est continue.

2. Montrer que si on munit E de la norme ||.||1, alors u n’est pas continue.

Exercice 11 : Soit £ un espace préhilbertien réel et soit a € E. Montrer que l'application linéaire
x +— (z|a) est continue.

Exercice 12 : On munit 'espace vectoriel E des suites bornées de RY de la norme infinie ||.||so-
1. Montrer que 'endomorphisme A de E donné par A((un)nen) = (Unt1 — Un)nen est continu.

2. En déduire que ’ensemble des suites constantes est un fermé de FE.

3.2 espace %.(E, F) et norme subordonnée

On note Z.(E, F) ensemble des applications linéaires continues de F dans F.
Comme Z.(E,F)=2Z(E,F)NC(E,F), Z.(E,F) estun sous-espace vectoriel de Z(E, F).
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,_[ Propriété 15 ] |

Soient F et F' des espaces vectoriels normés et u € Z.(F, F'). Alors les trois bornes supérieures
suivantes sont finies et égales :

sup = sup [lu(z)[| = sup [lu(z)]
cer\{oy |17l <1 |z =1

On note [|uf| ou ||ullop leur valeur commune.

L’application u € Z(E,F) — ||uf| est une norme sur Z.(E, F) appelée norme d’opérateur
ou norme subordonnée aux normes |.||g et |||

tPar définition, si u € Z.(E, F), Ve € E, ||u(x)] < |Hu|HHx||J

Exercice 13 : Soit E = M, (K).

1. Déterminer la norme d’opérateur de I'application Trace quand on munit E de la norme

[Mlloo = sup |m;;
1<i,5<n

2. Déterminer la norme d’opérateur de ’application Trace quand on munit E de la norme
n n
My =" ml
i=1j=1

Exercice 14 : On considére E = C([0, 1], K) muni de la norme ||.||;. Soit 7" application linéaire qui a
f € E associe sa primitive s’annulant en 0. Montrer que 7" est continue et, en considérant les fonctions
fn it (1 —1t)", calculer |7

Méthode — pour montrer que ||f|| = D

o On montre que Vz € E, || f(z)] < D||z||. Ainsi f est continue.

Pour tout z # 0, on a Il < D. Donc ||f|| < D.

]

e On repart alors de :

[1f ()l

Vo € B, [|f (@)l < IFIHl2] soit Va # 0, izl

< Il

Puis on peut :
£ (=)l

llzl

=D

— éventuellement déterminer un vecteur x € E non nul tel que

— ou déterminer une suite (x,) de vecteurs non nuls de E telle que lirf TonT
n—-+00 n

Ceci montre que ||f]|| = D. En définitive, ||| f|| = D.

,_[ Propriété 16 }

Pour u € Z.(E,F) et v € Z(F,G), on a ||lvoul| < |[v]| - [|lu]].- On dit que ||.|| est sous-
multiplicative.
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,_[ Définition 11 — adaptation matricielle }

Supposons K" et KP munis d’une norme. On appelle norme subordonnée de la matrice
A € M, ,(K), et on note |[|Al]|, la norme de I'application linéaire canoniquement associée a A.
]Il définit ainsi une norme sur M, ,(K).

AX
On a pour X colonne, ||A]| = sup |AX] = sup [|[AX]| = sup [|AX].
xz0 [IX[ xp<t IX|=1

-l est sous-multiplicative. Pour A et B dans M, (K), [|AB]| < || A[l-lIB]l-

Exercice 15 : Déterminer [||Al| pour A matrice de M,,(K) ne comportant que des 1, quand K" est muni
de la norme infinie.
3.3 applications multilinéaires

Dans ce paragraphe, E1, Fo, ..., E, et F' désignent des K-espaces vectoriels normés, et £y X --- x E, est
muni de la norme produit.

On rappelle qu'une application ¢ : By X --- x E, — F' est multilinéaire, ou p-linéaire, si elle est linéaire
en chacune de ses variables, c’est-a-dire que pour tout (z1,...,2p) € By X --- x E, et tout ¢ € [1,p],

y'_>@(xla"'7xi—17y7xi+17"'7$p) e"iﬂ(ElvF)

Conformément au programme, nous admettons la propriété suivante.

Propriété 17 — critere de continuité des applications multilinéaires ]

Une application multilinéaire ¢ : Fy x --- x E, — F est continue si, et seulement s’il existe C' > 0
tel que :

V(@1 mp) € By xco X By, @@, xp) | SOl - [z - - -

Nous verrons plus loin que si F1, Ea, ..., E, sont de dimension finie, toute application multilinéaire
p:Fy x---x E, = F est continue.

Exercice 16 : Soit F¥ un espace euclidien. Montrer que ’application produit scalaire est continue. Méme
question lorsque E est un espace préhilbertien réel.

4 Parties compactes d’un espace vectoriel normé

4.1 notion de compacité

Nous avons vu dans le chapitre Espaces vectoriels normés qu’on appelle :

— suite extraite ou sous-suite de (un)nen toute suite de la forme (uy(n))nen ot ¢ @ N — N est
strictement croissante.

— valeur d’adhérence de (uy,)nen toute limite £ € E de sous-suite de (uy)nen.

Une suite converge vers ¢ € F si, et seulement si, toutes ses sous-suites convergent vers £. La limite est
donc 'unique valeur d’adhérence d’une suite convergente. En revanche, une suite qui possede une seule
valeur d’adhérence n’est pas forcément convergente.
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—[ Définition 12 }

On dit qu'une partie A d’un espace vectoriel normé E est une partie compacte ou un compact si
toute suite d’éléments de A admet une sous-suite qui converge dans A.

Remarques :

— On peut reformuler : A est compacte si, et seulement si, toute suite d’éléments de A possede au
moins une valeur d’adhérence dans A..

— La définition d’une partie compacte s’appuie sur la convergence des suites. Elle dépend donc de la
norme utilisée. Mais deux normes équivalentes définissent les mémes compacts.

— Toute partie finie est compacte.

— Toute partie fermée et bornée de R ou C est compacte.

,_[ Propriété 18 }

Toute partie compacte est fermée et bornée.

Exercice 17 : Nous verrons qu’en dimension finie, la réciproque est vraie. Mais en général, la réciproque
est fausse. On munit K[X] de la norme |.||s0, ot pour P = 3 aX*, ||P|loc = sup{|ax|, k € N}.
keN

On consideére la sphere unité S. Vérifier que S est fermée et bornée mais non compacte.

,_[ Propriété 19 }

Tout fermé inclus dans un compact est compact.

—[ Théoréme 1 }

Une suite d’éléments d’une partie compacte converge si, et seulement si, elle admet une unique
valeur d’adhérence.

,_[ Propriété 20 — produit de compacts }

Soient E1, ..., E, des espaces vectoriels normés et Ay,..., A, des compacts de E1,..., ), respec-
tivement. Alors A; x --- x A, est un compact de I'espace produit Fy x --- x Ej,.

4.2 © continuité et compacité

—[ Théoréme 2 }

L’image d’'un compact par une application continue est un compact.

On déduit de ce théoréme la généralisation du théoréme de premiére année : « toute fonction continue sur
un segment est bornée et atteint ses bornes ». Ce résultat sera tres utile dans les problemes d’optimisation,
pour prouver 'existence d’'un maximum ou d’un minimum.

,—[ Théoréme 3 — © théoréme des bornes atteintes ]

Toute fonction continue sur un compact et a valeurs dans R, est bornée et atteint ses bornes.

MP 2025 — 2026 14 D. Leroy, lycée Pissarro



—[ Théoréme 4 — théoréme de Heine ]

Toute application continue sur un compact y est uniformément continue.

5 Espaces vectoriels normés de dimension finie

5.1 équivalence des normes en dimension finie

—[ Théoréme 5 } ]

Dans un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Ce puissant théoréme est admis, conformément au programme. Rappelons (propriété rencontrée au cha-
pitre Espaces vectoriels normés) que la convergence d’une suite équivaut a celle de ses suites composantes
dans une base. De méme, si f est une application a valeurs dans un espace de dimension finie, alors
I’étude de la continuité de f (ou plus généralement ’étude de la limite de f en un point) se rameéne a
celle de ses applications composantes dans une base.

Exercice 18 (B.E.O.) : On note E 'espace vectoriel des applications continues sur [0, 1] & valeurs dans R.
1
On pose : Vf € E, || fllo = sup [f(t)] et ||f] =/ £ (2)ldt.
t€[0,1] 0

1. Les normes || ||« €t || |1 sont-elles équivalentes ? Justifier.
2. Dans cette question, on munit F de la norme || ||co.
. EFE — R
(a) Soit u : { foe f0)
Prouver que u est une application continue sur FE.
(b) On pose F ={f € E/ f(0) =0}.
Prouver que F est une partie fermée de E pour la norme || | co-
3. Dans cette question, on munit E de la norme || ||;.

Soitc:{ 1] — R
T — 1

0

On pose : Vn € N*, f,(z) = 1
1 si —

n

(a) Soit n € N*. Calculer ||f,, — cl1.
(b) On pose F'={f € E/ f(0) =0}.
On note F 'adhérence de F.
Prouver que ¢ € F.
F est-elle une partie fermée de E pour la norme || ||; 7

5.2 compacts en dimension finie

— Théoreme 6 |

Dans un espace vectoriel de dimension finie, les compacts sont les fermés bornés.

Nous en déduisons par exemple :
— En dimension finie, la boule unité fermée et la sphére unité sont compactes.

— Toute application continue sur un fermé borné en dimension finie et a valeurs dans R est bornée
et atteint ses bornes.
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—[ Théoréme 7 — théoréme de Bolzano-Weierstrass ]

De toute suite bornée d’un espace vectoriel F' de dimension finie, on peut extraire une sous-suite
convergeant dans F'.

,_[ Propriété 21 }

Dans un espace vectoriel normé, tout sous-espace de dimension finie est fermé.

Par exemple, S,,(K) et A, (K) sont des fermés de M,,(K). Autrement dit, toute limite de suites de matrices
symétriques est une matrice symétrique.

5.3 continuité des applications (multi)linéaires et polynomiales

— Théoreme 8 |

e Si F est de dimension finie, toute application linéaire de F dans F' est continue.

e Si Fy,...,E, sont de dimension finie, toute application multilinéaire de Fy x --- x E, dans
F' est continue.

Exercice 19 : Soit P une matrice inversible d’ordre n. Montrer que M + P~'M P est continue sur M,,(K).
Exercice 20 : Montrer que I’ensemble des matrices de trace strictement positive est un ouvert de M, (R).

Exercice 21 : Soit B une base d’un espace vectoriel £ de dimension finie n. Montrer que detp est continue
sur B".

N Exercice 22 :
1. Montrer que le produit matriciel p : (4, B) — AB est continu sur (M,,(K))2.
2. Montrer que la composition ¢ : (f,g) + g o f est continue sur (Z.(E))>2.

—{ Définition 13 }

On appelle :

— monodme sur KP toute application f: K? — K de la forme

ni . no n
(1,...,2p) =t zy® . app

» ou les n; sont entiers naturels

— fonction polynomiale sur KP toute combinaison linéaire de mondmes.

Par exemple, P : (z,y, z) — /22y° — xyz? + 2z est une fonction polynomiale sur R3.

MP 2025 — 2026 16 D. Leroy, lycée Pissarro



—[ Définition 14 }

Soit (eq,...,ep) une base de E. On appelle :

— mondme sur F toute application f: F — K de la forme

P
T = E Tie; = x7'xy” .. 2y ol les m; sont entiers naturels
i=1

— fonction polynomiale sur E toute combinaison linéaire de monomes.

Remarque : si f est une fonction polynomiale dans une base B, c¢’est encore une fonction polynomiale
dans une base B’. Par formule de changement de bases, X = PX’, donc si f est polynomiale en les x;,
elle est aussi polynomiale en les /.

Propriété 22 }

Toute application polynomiale d’un espace vectoriel de dimension finie est continue. ]

Par exemple, I'application M + M3 est continue car les coefficients de M? sont polynomiaux en les
coefficients de M.

N Exercice 23 : Montrer que det : M — det(M) est continue sur M, (K). Montrer que GL,(K)

est un ouvert de M,,(K). Rappeler GL,,(K) (qu’on a rencontré dans un exercice plus haut).

6 Parties connexes par arcs d’un espace vectoriel normé
FE désigne toujours un espace vectoriel normé.
—[ Définition 15 }

Soit (a,b) € E%. On appelle chemin (ou arc) continu joignant a & b toute application continue -y
de [0,1] dans E telle que y(0) = a et (1) = b.

Par exemple, pour relier a et b par ce qu'on appelle un segment, on prend le chemin :
V(t) =

— Définition 16 }

Une partie A de E est connexe par arcs si pour tout (a,b) € A2, il existe un chemin continu
joignant a a b a valeurs dans A.

Remarques :

— Par exemple, les parties convexes de E sont connexes par arc, puisqu’on peut relier deux points de
cette partie par un chemin continu (un segment), en restant dans la partie.

— On pourrait remplacer le segment [0, 1] par n’importe quel autre segment de R.

— L’existence d’un chemin continu entre a et b revient schématiquement a joindre les deux points a
I’aide d’un stylo sans lever le crayon.
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,_[ Propriété 23 }

On définit : a R b 8’1l existe un chemin continu & valeurs dans A joignant a et b. La relation binaire
ainsi définie est une relation d’équivalence.
Les classes d’équivalence sont les composantes connexes par arcs.

Une partie est connexe par arcs si et seulement si elle
n’admet qu’une seule composante connexe par arcs.
Ci-contre, nous avons trois composantes connexes

Q par arcs, chacune est connexe par arcs.

Il résulte de la transitivité de R que les parties étoi-
lées (parties A pour lesquelles il existe a € A tel que
pour tout = € A, [a,x] C A) sont connexes par arcs.
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,_[ Propriété 24 ] .

Les parties connexes par arcs de R sont les intervalles.

,_[ Propriété 25 }

Soient f : E — F une application continue et A une partie connexe par arcs de E. Alors f(A) est
connexe par arcs.

Exemple : U est connexe par arcs car c’est 1'image
de R, connexe par arcs, par la fonction continue

,_[ Corollaire 1 — théoréme des valeurs intermédiaires généralisé }

Pour f: F — R continue, I'image de toute partie connexe par arcs est un intervalle.

Exemple : GL,(R) n’est pas connexe par arcs. En effet, det(GL,(R)) = R*, det est continue, et R* n’est
pas connexe par arcs.

Exercice 24 (CCINP 2025) :
1. Soit une application f :] —1,1[— R? de classe C!. Justifier que f/(] —1,1[) est une partie connexe
par arcs de R?,

2. On considére I'application f :] —1,1[— R? définie par :

B (070) SitE] _170]
1= {(t2 sin % cos §) it €]0,1]

On note, pour tout (z,y) € R?, ||(z,y)|]2 = 22 + 32.
(a) Démontrer que f est dérivable en 0 puis sur l'intervalle | — 1, 1[. Préciser le vecteur f’(t) pour
tout ¢ €] — 1,0] et pour tout ¢t €0, 1].
(b) Démontrer que : Vt €]0,1[, || f'(t)|l2 = 1 et en déduire que f/(] — 1,1[) n’est pas connexe par
arcs de R%. On pourra tracer la boule unité de R? pour ||.||2 et on acceptera un dessin pertinent
comme preuve.
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7 Annexe : quelques éléments de démonstrations

Propriété 1
e Faire un schéma évidemment !
Soit z € B(a,r). On a ||z — a|| < r. Soit y € B(z,r — ||z — al|). On a

ly —all < lly ==l + Iz —al <7 — [z —all + [lz — a
donc ||y —a|| <7 et y € B(a,r).
e Soit z € Bf(a,r). On a ||z — al| > r. Soit y € B(x, ||z — al| — 7).

lz —all < lly —all + llz =yl < lly —all + |z —al = r
donc r < |ly —al| et y & By(a,r).

Propriété 3
Soit @ = (ai1,...,ap) € Uy X -+ X Up. Pour tout ¢ compris entre 0 et p, il existe r; > 0 tel que B(a;, ;) C U; (boule pour
la norme Nj;). Posons r = min(ri,...,rp). On a r > 0. Soit © € B(a,r) (boule pour la norme produit). On rappelle que la

norme produit est définie par
N(t) = max N;(t;)

1<igr

Donc pour tout ¢, Ni(z; — a;) < N(xz —a) < r < 1, et donc z; € U;, et x est dans le produit des Us.
Pour un produit de fermés, c’est plus pratique d’utiliser la caractérisation séquentielle des fermés. On passe.

Propriété 4

¢ Supposons que A est un fermé et soit (z,,) une suite d’éléments de A qui converge vers £.

Par labsurde, supposons que £ ¢ A. Comme E \ A est un ouvert, il existe un voisinage de ¢ contenu dans E \ A, autrement
dit, il existe r > 0 tel que B(¢,r) C E\ A.

Comme z,, tend vers ¢, ce voisinage de ¢ contient tous les x,, a partir d’un certain rang ng :

dng € N/Vn = no, ||zn —£|| < r et donc z, € B({,r) CE\ A

Ceci contredit : z, € A.

e Supposons que toute suite d’éléments de A qui converge a sa limite dans A. Raisonnons la encore par 'absurde en
supposant que A n’est pas un fermé. Alors E \ A n’est pas un ouvert. Il existe y € E \ A tel que pour tout n € N*, B(y, %)
n’est pas contenue dans E \ A. Pour tout n > 1, il existe z,, € B(y, &) tel que z,, € A. Ceci nous fournit une suite (z)
d’éléments de A qui tend vers y ¢ A. C’est exclu.

Propriété 5

Je ne montrerai, au mieux, que la propriété sur les ouverts (celle avec les fermés est difficile a suivre).

o« Montrons que A est le plus grand ouvert inclus dans A. Pour cela, montrons que A = Q ot  est la réunion de tous les
ouverts inclus dans A (c’est donc bien un ouvert de E).

— Soit # € A. Il existe r > 0 tel que B(z,7) C A et B(x,r) est un ouvert, donc B(z,r) C Q. Ainsi, z € Q.

— Soit x € Q. x appartient & un ouvert inclus dans A donc appartient a une boule incluse dans A : = € A.

« Montrons que A est égal & F, intersection de tous les fermés contenant A (ainsi A est un fermé).

— Soit x € F.
Si x ¢ A, alors il existe r > 0 tel que B(z,r) N A = §. On a alors B(z,r) C E\ A, puis A C E\ B(z,r). Mais
E\ B(z,r) apparait alors comme un fermé qui contient A. Donc F' C E \ B(z,r). Ce qui est contradictoire avec
z € F...donc z € A.

— Soit « € A. Par I'absurde, supposons que = & F.
E\ F' est un ouvert, donc il existe r > 0 tel que B(z,r) C E\ F. Ona F C E\ B(z,r).
Donc A C F C E\ B(z,r). Et enfin, B(z,r) C E \ A, ce qui contredit z € A. Donc = € F.

o

« La frontiére est un fermé puisque Fr(A4) = AN (E\ A).

Propriété 6

e Soit x € A.

Pour tout n € N, B(xz, %-H) NA # 0 donc il existe z,, € B(z, %_H)QA. La suite (zr) est une suite d’éléments de A convergeant
vers .
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¢ Soit z limite d’une suite (a,) d’éléments de A. -
Soit r > 0. B(z,r) contient tous les a, pour n suffisamment grand, donc B(z,r) N A # (. Donc z € A.

Propriété 7

Montrons I'invariance des fermés par usage de normes équivalentes. Soit A une partie de E fermée pour la norme N.

Soit (u,) une suite d’éléments de A convergeant vers £ pour N'. On a vu au chapitre Espaces vectoriels normés que (u)
convergeait également pour la norme N. Comme A est fermé pour N, ¢ € A.

Donc A est un fermé pour N'.

Comme les ouverts sont les complémentaires des fermés, on a aussi I'invariance des ouverts par usage de normes équivalentes.

Propriété 8
e Supposons lim f = £. Soit (uy) une suite d’éléments de A qui tend vers a.
a
Soit € > 0. Il existe a > 0 tel que pour z € B(a,a) N A, on a f(x) € B({,¢).
Par convergence de u vers a, il existe un rang no tel que pour n > no, u, € B(a,«). On a donc || f(un) — £|| < e.
La suite (f(un)) tend vers £.

e Pour l'autre implication, on raisonne par contraposée. Supposons que f ne tende pas vers ¢ quand z tend vers a. Il

existe € > 0 tel que pour tout o, = %H > 0, il existe z,, € B(a, an) N A tel que f(zn) € B¢, ¢).
1

Comme |zn —al| < 737,

on a limz, = 0. Comme ||f(xn) — ¢|| > &, (f(zn)) ne tend pas vers .

Propriété 9

Soient D une partie dense dans A, et g et f telles que : Vo € D, f(z) = g(x). Soit a € A. Par densité de D dans A, il existe
(zn) une suite d’éléments de D de limite a. On a f(z,) = g(z,) pour tout n. Par continuité de f et g en a, f(zn) — f(a)
et g(zn) — g(a). Par unicité de la limite d’une suite, f(a) = g(a).

Propriété 10

C’est tout simplement immédiatement le théoréme d’encadrement !

Propriété 12
e Soit f une application k-lipschitzienne. Soit € > 0.
On pose 1 = ;=5 Pour z et y dans A vérifiant ||z — y|| <7, on a

1f(2) = FWIl < klle —yll <e

f est donc uniformément continue.

¢ La continuité uniforme entraine la continuité (facile).

o Soit f: x> 2. f est continue sur R. Montrons que f n’est pas uniformément continue.

On prend ¢ = 1. Tl existe n > 0 tel que |z — y| < n = |#? — y*| < 1. Pour z réel et y = = + 7, on trouve :

Vo € R, [2nz +7°| <1
c’est contradictoire (avec x — +00).

. Rt — R . , . o
e Soit f: ( ) Montrons que f est uniformément continue sur R et n’est pas lipschitzienne.

x —
Raisonnons par I'absurde en supposant que f est k-lipschitzienne. Je prends y = 0, ¢a donne |/z| < k|z|, puis pour = > 0,
1 < k+/z. Contradictoire avec z — 0.
Lemme : |z — /y| < /| —y|.
Vrai car équivalent & x+y—2,/zy < |z—y|, et dans le cas ol > y, équivalent & z+y—2,/zy < x—y puis 2,/y(,/y— =) <0,
ce qui est vrai.

Soit £ > 0. On pose n =& > 0. Si |z — y| < n, alors [z — /| <e.

Propriété 13 dans le cas ou A =F
Soit f : E — F une application continue.

e Soit U un ouvert de F.

Soit a € f~1(U). On a f(a) € U, et comme U est ouvert, il existe r > 0 tel que B(f(a),r) C U.

Par continuité de f en a, il existe n > 0 tel que pour € B(a,n), on ait f(z) € B(f(a),r). Ainsi pour € B(a,n),
z € fHU).

Blain) € f1(U).

« Soit R un fermé de F. Soit (z,) une suite convergente (vers £) d’éléments de f~'(R).
Comme f est continue en ¢, lim f(z,) = f(£). Comme (f(z,)) est une suite de F' et que F est fermé, f(¢) € R. Donc
Le fHY(R).
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Propriété 14 : critére de continuité des applications linéaires
e Soit u € Z(E, F) continue. On a lir% u(z) = u(0) = 0 et on prend € = 1 dans la définition de la continuité en O :
r—

I >0, [t <n = [lu(@)] <1

Soit € E. Si x =0, on a [[u(0)|| = [|0]|. Si x # 0, on prend t = ;2 et on a ||t|| < 7. Donc

n
I
]|z

N

)|l <1 et par linéarité de wu, Il
x

lu(z)] <1
C= % convient.
¢ On suppose l'existence de C tel que pour z € E, ||u(z)|| < C|z||. Soit a € E.
|lu(z — a)||C < ||z — a|| et par linéarité de u, ||u(z) —u(a)|| < Cllz — a|
Par le théoréme d’encadrement, ilg}) u(z) = u(a).

Propriété 15

e L’ensemble { Hlﬂgfu)”

, x € E\ {0}} est une partie non vide et majorée de R (majorée d’apres le critere de continuité des

applications linéaires). Donc cet ensemble admet une borne supérieure. Méme chose pour l'existence des deux autres bornes
supérieures. On a facilement

ulx
@ sup POUS op @) et () s u@l > swp fu@)
servgoy Nzl 2€E, ||z|=1 € E\{0},|lz||<1 2€ B, ||z)=1

— Soit z € E \ {0}. Par linéarité de u,

[u(@)] = Hxl\llu(r)\l <zl sup Jlu@)]l
x| teE, ||t]|=1
et donc ”mﬁ‘)” < sup  u(®)].
teE, ||t]=1
Par passage au sup, sup H“ﬁ(f”)” < sup  |ju(t)]]. On a donc une égalité dans (x).
zeE\{0} teE, |It]|=1

— Soit & non nul de norme inférieure ou égale a 1. H%H est de norme 1. On a donc

xr
Hu(r)ll < sup u(d)]
$’|| teE, |t||=1

llu(@)|l
< sup lu(t)]
[l teE, |[t|=1

lu@) < sup  Ju@)]) x [lz < sup Ju(@)])

teB, |tl=1 ter, |tl=1
On a donc une égalité dans (xx).
o Vérifions que |||.|| est une norme.
Séparation : Vz € E, ||u(z)| < [|u]|.]|z|| donc si [|ul| =0, alors ||u(z)| = 0 pour tout z, puis u = 0. (g).

Inégalité triangulaire : Soient u et w des applications linéaires continues. Soit  un vecteur de norme 1.
(v +w)(2)[| = [lu(z) + w@)]| < [Ju@)]| + [[w@)] < [lull + [lwll

Et donc [[lu + w(| < [lull] + {w]I

Homogénéité : Soit A dans K.
lIxull = sup{[[Au(@)l, [lz[| = 1} = sup{[Al[lu(@), llz|l =1}
On a vu au chapitre Espaces vectoriels normés que pour k € R™, sup(kA) = ksup(A). Donc
llAull = [Alsup{[lu(@)|l, [lz]| = 1} = [A] - [[u]l

Propriété 16
Facile : [Jo(u(z))[| < llvlll - llu()]| < Mol - el - ]

Toute partie finie est compacte (page 14)
Soit u une suite & valeurs dans {a1} U--- U {a,}. Il existe ¢ tel que {a;} contienne une infinité de termes de la suite. Soit v
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la sous-suite de u constituée de tous les termes de u qui valent a;. v est constante, et converge vers a;.

Toute partie fermée et bornée de R ou C est compacte (page 14)

Soit A une partie fermée et bornée de R ou C. Soit u une suite de A.

Par le théoreme de Bolzano-Weierstrass vu en premiere année, de toute suite bornée de C, on peut extraire une sous-suite
convergente. Donc on peut extraire de u une sous-suite convergente. Cette sous-suite est constituée d’éléments de A, et A
est fermé, donc la limite de la sous-suite est dans A.

Propriété 18

Soit A une partie compacte de E.

o A est fermée. En effet, soit u une suite d’éléments de A convergeant vers £. Par compacité de A, il existe une sous-suite
qui converge dans A. Or toutes les sous-suites d’une suite convergente tendent vers £. Donc ¢ € A.

e A est bornée. Supposons qu’elle ne le soit pas. On pourrait alors construire pour tout n € N, z,, € A tel que ||z,| > n.
On a lim ||z, || = +o00. Donc lim ||z ,(n)|| = +00 (au besoin ¢(n) > n donne lim ¢(n) = +00). Donc (x () diverge.

Propriété 19

Soit F' un fermé inclus dans A compact. Soit (z,) une suite d’éléments de F.

Comme A est compact, on peut extraire de (z,) une sous-suite convergente. Cette sous-suite est formée de termes apparte-
nant & F et F est fermé. Donc sa limite ¢ appartient & F. On a donc réussi a extraire de (z,) une sous-suite convergente
dans F'. F' est compact.

Théoréme 1

(=) vrai méme si on n’est pas dans un compact.

(«=) Soit une suite (u,) d’éléments du compact A et admettant une unique valeur d’adhérence a. On veut montrer que (uy)
converge vers a. Par 'absurde, si (u,) ne tend pas vers a, il existe € > 0 tel que pour tout no € N, il existe n > no tel que
lun —al| > e.

On arrive avec ¢a & construire une sous-suite v de (un) telle que ||v, — al| > €.

Puisque A est compact, on peut extraire une suite convergente de v. Sa limite est une valeur d’adhérence de v, mais aussi
de u, donc vaut a. Donc 0 > €. C’est exclu.

Propriété 20 dans le cas de deux espaces
Soit (x,) = (a:SLU, :1:5?)) une suite de A1 X As. Puisque A; est compact, on peut extraire de (:rﬁbl)) une suite convergente (z

(2
p(n)

1
50()70)'
Puisque A2 est compact, on peut extraire de (x ) une suite convergente, d’extraction . La suite (xy,)) converge, et
converge dans A; X As.

Rappel : une suite définie sur un espace vectoriel normé produit converge si et seulement si chacune des suites composantes

converge.

Théoreme 2

Soit f continue et A compact. Soit (yn) = (f(zr)) une suite de f(A).

Puisque A est compact, (r,) admet au moins une valeur d’adhérence : a € A, limite de la sous-suite (2, (,)).

On a limz,(,) = a. Par continuité de f, lim f(x,n)) = f(a). Donc (y.) admet au moins une valeur d’adhérence.

Théoréme 3 (des bornes atteintes)

Ici f est a valeurs dans R.

f(A) est un compact donc f(A) est fermée et bornée. Donc f est bornée. Et il existe s = sup f(A). Il existe une suite
(sn) = (f(an)) de limite s. Comme f(A) est fermée, s € f(A). Méme chose avec l'inf.

Théoréme 4 (de Heine)

Méme principe que la démonstration de MPSI, valable sur un segment. Nous allons raisonner par I'absurde. Soit f continue
sur A une partie compacte de E. Supposons que f ne soit pas uniformément continue sur A :

>0, Va>0, Ir,y € A, [lz -yl <aet [|f(z) - fY)l =

Pour tout entier n € N*, il existe @n,yn € A tels que [lzn — yn|| < L et || f(zn) — f(yn)|| = €. On peut extraire de la suite
(zn) (puisque A est compact) une sous-suite convergente (Z,(n)), convergeant vers a € A.

[Zp(n) — Yo(mll < £ donc (ye(n)) converge elle aussi vers a.

Par continuité de f, lim f(z,(n)) = f(a) = im f(y,(n)). On a une contradiction dans || f(z,(n)) — f(Yewm))ll = €.

Théoréme 6

On a déja vu que les compacts sont fermés et bornés.

Réciproquement, soient A une partie fermée et bornée de F, supposé de dimension finie, et une suite (z,,) d’éléments de A.
Soit une base (e1,...,ep) de E.

Par équivalence des normes, A est fermée et bornée au sens de la norme ||y|loc = max |y |.

IM eR, Vy € A, [lylle <M
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On écrit zp, = > 28 ex. Les suites de coordonnées (z),, sont bornées (puisque pour tout n € N, \a:(nk>| < M) et a valeurs
k=1

dans K. Elles admettent dont toutes une sous-suite convergente (Bolzano-Weierstrass dans C). Il en va donc de méme pour

Théoréme 7 — Théoréme de Bolzano-Weierstrass

Soit u une suite bornée. Il existe M > 0 tel que tous les u, appartiennent a Bf(0, R). Cette boule est fermée et bornée.
Comme F est de dimension finie, c’est un compact. Donc (u,) admet une valeur d’adhérence // il existe une sous-suite
convergente.

Propriété 21

Soit u une suite convergente d’éléments de F' et £ sa limite.

Comme u converge, u est bornée. C’est une suite bornée de ’espace vectoriel F' de dimension finie. Par le théoréme de
Bolzano-Weierstrass, il existe une sous-suite convergente extraite de u, convergeant dans F. Or cette sous-suite converge
vers £. Donc £ € F.

Théoréeme 8

e Soit F est de dimension finie, et © € Z(E, F).

Soit (e1,...,ep) une base de E. On munit E de ||.||[« pour cette base.
Pour x = z1e1 + - - + zpep € E, on a u(x) = z1uler) + - - + zpulep).

lu@)|| < laa]-lule)]] + - - + [zp]-[lulep)]| < Kllz|

ot k = [Ju(er)|| + - - - + |Julep)]|-

e Démonstration uniquement pour 2 ensembles. Soient F1, F> de dimension finie, et ¢ une application bilinéaire de E; x Fo
dans F.

On prend (e1,...,ep) une base de E1. On munit E; de ||.|| pour cette base.

On prend (fi,..., fy) une base de E2. On munit F> de ||.||cc pour cette base.

p q
Comme précédemment, on montre que ||¢(z, y)|| < kl|lz||.|lyl on k=D > |leo(es, £3)|-
i=1j=1

Propriété 22
Soit f : E — K une fonction polynomiale. Si B = (e1,...,ep) est une base de E, f est produits et combinaisons linéaires des
formes linéaires coordonnées :
n
T L X = E Trer — T;
k=1

et les m; sont continues en tant qu’applications linéaires avec un espace de départ de dimension finie.

Propriété 23

On montre que la relation binaire R est réflexive, symétrique et transitive.

Réflexivité : a est relié avec lui-méme par le chemin continu v : ¢t — a.

Symeétrie : S’il existe un chemin continu v joignant a et b, t — (1 — t) est un chemin continu joignant b et a.

Transitivité : S’il existe un chemin continu v1 (resp. v2) joignant a et b (respectivement b et c¢), alors ’application

{71(2t) sit<1/2

it
7 Y22t —1) sit>1/2

est un chemin continu (& vérifier!) joignant a et c.

Propriété 24

Soient x,y € A, ou A est une partie connexe par arcs de R, et v : [0,1] — A un chemin continu les reliant. D’apres le théoréme
des valeurs intermédiaires (version réelle), 'image d’un intervalle par une fonction continue est un intervalle. v([0, 1]) est
donc un intervalle de A qui contient x et y. Le segment [x,y] est donc inclus dans A.

On reconnait la définition d’un intervalle.
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