
Topologie des espaces vectoriels normés
– Espaces vectoriels normés, deuxième partie –

Les attentes

1. Savoir définir : « U est un ouvert de E ». Savoir définir un fermé, et
connaître la caractérisation par les suites.

2. Propriétés sur les ouverts et les fermés.
3. Savoir montrer qu’un ensemble est ouvert / fermé avec le théorème

de l’image réciproque.
4. Continuité d’une application définie sur E ; caractérisation séquen-

tielle.
5. Cas particulier des applications linéaires : critère de continuité.

Norme d’opérateur ou norme subordonnée. Sous-multiplicativité
d’une norme d’opérateur.

6. Critère de continuité des applications multilinéaires.
7. Savoir définir : « K est un compact ». Propriétés ( !).
8. Théorème des bornes atteintes.
9. Les apports de la dimension finie :

—
— Équivalence des normes en dimension finie.
— Une partie d’un espace normé de dimension finie est compacte

si, et seulement si, elle est fermée et bornée.
— Théorème de Bolzano-Weierstrass.
— Un sous-espace de dimension finie d’un espace normé est fermé.
— Si E est de dimension finie, L (E, F ) = Lc(E, F ). Continuité

des applications polynomiales définies sur un espace normé
de dimension finie, des applications multilinéaires définies
sur un produit d’espaces vectoriels normés de dimensions finies.

1. Définitions : intérieur, adhérence, frontière.
2. Partie dense.
3. Applications uniformément continues. Théorème de Heine.
4. Démonstrations formatrices : une boule ouverte est un ouvert.
5. — Dans un espace vectoriel normé, chemin (ou arc) joignant deux

points ; partie connexe par arcs.
— Relation d’équivalence associée sur une partie A de E. Les

classes sont les composantes connexes par arcs.
— Cas des parties convexes, des parties étoilées.
— Les parties connexes par arcs de R sont les intervalles.
— Image continue d’une partie connexe par arcs. Cas particulier

des applications à valeurs réelles : théorème des valeurs
intermédiaires.

Ce chapitre fait suite au chapitre Espaces vectoriels normés. K désigne R ou C et (E, ∥.∥) désigne
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un K-espace vectoriel normé. Les notions topologiques que nous allons présenter ne sont pas modifiées
lorsqu’on passe d’une norme à une norme équivalente. En particulier, si l’espace E est de dimension finie,
elles ne dépendent pas de la norme choisie.

1 Notions topologiques

1.1 voisinages, ouverts, fermés

Révisions : soit a ∈ E et r > 0. On appelle :
• boule ouverte de centre a et de rayon r, l’ensemble B(a, r) = {x ∈ E | ∥x − a∥ < r}.
• boule fermée de centre a et de rayon r, l’ensemble Bf (a, r) = {x ∈ E | ∥x − a∥ ⩽ r}.
• sphère de centre a et de rayon r, l’ensemble S(a, r) = {x ∈ E | ∥x − a∥ = r}.

Définition 1
Soient A une partie de E et x un élément de E . On dit que :

• A est un voisinage de x s’il existe r > 0 tel que B(x, r) ⊂ A.
• A est un ouvert de E si A est un voisinage de chacun de ses points, c’est-à-dire si :

∀x ∈ A, ∃r > 0, B(x, r) ⊂ A

• A est un fermé de E si son complémentaire est un ouvert.

On remarque que E et ∅ sont des ouverts et des fermés de E.

La partie dessinée plusieurs fois ci-contre est :
— un ouvert si on la considère sans son contour,
— un fermé si on la considère avec son contour,
— ni un ouvert ni un fermé si on la considère avec une

partie de son contour.

Propriété 1

Une boule ouverte est un ouvert. Une boule fermée est un fermé.

Propriété 2

Toute union d’ouverts est un ouvert. Une union finie de fermés est un fermé.
Une intersection finie d’ouverts est un ouvert. Toute intersection de fermés est un fermé.
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Exemple : dans R, l’intervalle ]2, 4[= {x ∈ R, |x − 3| < 1} est la boule ouverte de centre 3 et rayon 1 ;
c’est un ouvert.

Remarques :
— L’exemple de ⋂

n∈N∗

]
− 1

n
,

1
n

[
= . . . . . .

montre qu’une intersection quelconque d’ouverts n’est pas forcément un ouvert.
— La sphère S(a, r) est un fermé comme intersection des fermés Bf (a, r) et E \ B(a, r).

Les sphères sont des fermés.

Plus généralement, dans R muni de la valeur absolue,

]a, b[

]a, +∞[

] − ∞, b[

[a, b]

[a, +∞[

] − ∞, b]

]a, b] n’est ni un ouvert ni un fermé
[a, b[ n’est ni un ouvert ni un fermé

Propriété 3 – produit d’ouverts

Soient E1, . . . , Ep des K-espaces vectoriels normés. On munit l’espace produit E1 × · · · × Ep de la
norme produit.

• Si U1, . . . , Up sont des ouverts de E1, . . . , Ep respectivement, alors U1 ×· · ·×Up est un ouvert
de E1 × · · · × Ep.

• Si U1, . . . , Up sont des fermés de E1, . . . , Ep respectivement, alors U1 × · · · × Up est un fermé
de E1 × · · · × Ep.

Par exemple,

[0, 1] × R+

] − 1, +∞[×R×]0, 1[
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La définition d’une partie fermée n’est pas facile à manier. On dispose cependant d’une caractérisation
pratique : pour montrer qu’une partie A est fermée, il suffit de montrer que toute suite convergente de A
a sa limite dans A. Autrement dit, A est fermée lorsqu’on ne sort pas de A par passage à la limite !

On rappelle que, par définition, un → ℓ lorsque .

Propriété 4 – caractérisation séquentielle des fermés

Une partie A de E est fermée si, et seulement si, toute suite convergente d’éléments de A a sa
limite qui appartient à A.

Exercice 1 : En utilisant la caractérisation séquentielle des fermés :
1. montrer que les singletons de E sont des fermés de E (les parties finies sont alors des fermés en

tant que réunion finie de fermés),
2. montrer que l’intervalle [0, 1[ n’est pas un fermé de R,
3. montrer que l’orthogonal d’un sous-espace vectoriel d’un espace préhilbertien réel est un fermé,
4. montrer que C0(R,R) est un fermé de B(R,R) (espace vectoriel des fonctions bornées) pour la norme

∥.∥∞.

1.2 intérieur, adhérence, frontière

Définition 2
Soient A une partie de E et x un élément de E.

• x est un point intérieur à A s’il existe r > 0 tel que B(x, r) ⊂ A, c’est-à-dire si A est un
voisinage de x.

• x est un point adhérent à A si pour tout r > 0, B(x, r) ∩ A ̸= ∅.
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Définition 3
Soit A une partie de E.

• On appelle intérieur de A et on note Å l’ensemble des points intérieurs à A.
• On appelle adhérence de A et on note A l’ensemble des points adhérents à A.
• On appelle frontière de A et on note Fr(A), l’ensemble A \ Å.

Ensemble A Intérieur de A Adhérence de A Frontière de A

Propriété 5

• L’intérieur de A est un ouvert de E, c’est le plus grand des ouverts inclus dans A.
• L’adhérence de A est un fermé de E, c’est le plus petit des fermés contenant A.
• La frontière de A est un fermé de E.

On a Å ⊂ A ⊂ A.

Il s’ensuit que A est un ouvert si et seulement si Å = A, et que A est fermé si et seulement si A = A.

Propriété 6 – caractérisation séquentielle des points adhérents

Un point x de E est adhérent à A si et seulement s’il existe une suite d’éléments de A convergeant
vers x.

Reformulons : l’adhérence de A est l’ensemble des limites des suites convergentes à valeurs dans A.

Par exemple, la matrice nulle est adhérente à GLr(K) car les matrices 1
nIr sont inversibles et tendent

vers la matrice nulle.

Exercice 2 (B.E.O.) : Montrer que si A ⊂ B, alors A ⊂ B.

Propriété 7

Si l’espace vectoriel E est muni de deux normes N et N ′ équivalentes, alors (E, N) et (E, N ′) ont
les mêmes voisinages, ouverts, fermés, intérieurs et adhérences.
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1.3 parties denses dans E

Définition 4
On dit que A est une partie dense dans E quand l’adhérence de A est égale à E.

— Dans le chapitre Suites et séries de fonctions, nous avons vu que l’ensemble des fonctions en
escalier sur [a, b] était dense dans (CM([a, b], F ), ∥.∥∞) où F est un espace vectoriel de dimension
finie, et que l’ensemble des fonctions polynomiales était dense dans (C([a, b],K), ∥.∥∞).

— En première année, vous avez vu que : Q et R \ Q sont denses dans R.

P Exercice 3 : Montrer que GLn(K) est dense dans Mn(K).

1.4 topologie relative à une partie

On voudrait ici avoir de « bons voisinages » lorsqu’on modifie (légèrement) l’ensemble de travail. Par
exemple, on conçoit que si [0, ε[ n’est pas un voisinage de 0 dans R, il a une bonne tête pour être
voisinage de 0 dans R+. Nous admettons les équivalences dans les définitions suivantes, dans lesquelles
A est une partie de E (pas forcément un espace vectoriel, donc) et a ∈ A.

Définition 5
On dit qu’une partie V de A est un voisinage relatif de a dans A quand c’est l’intersection d’un
voisinage de a dans E avec A.

V = A ∩ V avec V voisinage de a dans E

Définition - propriété 1

On dit qu’une partie Ω de A est un ouvert relatif de A quand Ω est voisinage relatif de chacun de
ses points, ou de manière équivalente, si Ω est l’intersection d’un ouvert de E avec A :

Ω = A ∩ U avec U ouvert de E

Définition - propriété 2

On dit qu’une partie F de A est un fermé relatif de A quand c’est le complémentaire dans A d’un
ouvert relatif de A, ou de manière équivalente, si F est l’intersection d’un fermé de E avec A :

F = A ∩ F avec F fermé de E

Par exemple,

[0,
1
2[ est un ouvert relatif de [0, 1] car

]0, 3] est un fermé relatif de R+∗ car
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2 Étude locale d’une application dans un espace vectoriel normé,
continuité

E et F sont des espaces vectoriels normés et f est une application de A ⊂ E dans F .
Toutes les propriétés vues dans cette section restent inchangées si on remplace les normes des espaces
vectoriels normés considérés par des normes équivalentes. En particulier, elles ne dépendent pas du choix
de la norme lorsque les espaces sont de dimension finie. Dans la pratique, on va s’intéresser à :

— des fonctions numériques d’une ou plusieurs variables réelles
— des fonctions d’une variable complexe (conjugaison z 7→ z, exponentielle complexe z 7→ ez,...)
— aux applications d’une variable matricielle, par exemple det : A 7→ det(A), A 7→ A−1, applications

linéaires ou multilinéaires...

2.1 limite
Définition - propriété 3

Soit f : A ⊂ E → F , a ∈ A et ℓ ∈ F . On dit que f a pour limite ℓ en a si :

∀ε > 0, ∃α > 0, ∀x ∈ A, ∥x − a∥ < α ⇒ ∥f(x) − ℓ∥ < ε

Lorsqu’elle existe, la limite est unique.
On note lim

a
f = ℓ, ou lim

x→a
f(x) = ℓ ou encore f(x) −→

x→a
ℓ.

On aurait pu présenter la définition avec des inégalités larges. On peut reformuler :
f admet pour limite ℓ en a si pour tout voisinage V de ℓ, il existe un voisinage U de a relatif à A tel que
f(U) ⊂ V
ou encore en termes de boules : ∀ε > 0, ∃α > 0, ∀x ∈ B(a, α) ∩ A, f(x) ∈ B(ℓ, ε).

Dans toute la suite, f : A ⊂ E → F et a ∈ A. La propriété suivante va permettre d’utiliser les ré-
sultats obtenus sur les suites dans un espace vectoriel normé pour établir de nombreuses propriétés sur
les limites.

Propriété 8 – caractérisation séquentielle de la limite

L’application f admet pour limite ℓ en a si, et seulement si, pour toute suite (un) d’éléments de
A tendant vers a, on a lim f(un) = ℓ.

En conséquence, on a facilement les propriétés :
— limite d’une combinaison linéaire : lim

a
(λf + µg) = λ lim

a
f + µ lim

a
g

— limite d’une composée
— le théorème d’encadrement : si ∥f(x) − ℓ∥ ⩽ g(x) et lim

a
g = 0, alors lim

a
f = ℓ

— pour des fonctions à valeurs réelles, on peut passer à la limite dans une inégalité large
— pour des fonctions à valeurs complexes, on peut faire le produit de limites, et on peut faire le

quotient de limites si la limite au dénominateur est différente de 0
— on peut raisonner par composantes dans un espace produit d’espaces vectoriels normés

(f1(x), . . . , fp(x)) −−−→
x→a

(ℓ1, . . . , ℓp) équivaut à ∀i ∈ J1, pK, lim
a

fi = ℓi.

En particulier, dans R2, (x, y) → (a, b) si et seulement si (x → a, y → b).
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Exercice 4 : On se méfie de la gestion de doubles limites...
Calculer lim

n→+∞
lim

p→+∞
(1 − 1

n)p et lim
p→+∞

lim
n→+∞

(1 − 1
n)p.

△!
{

x2 ⩽ x2 + y2

y2 ⩽ x2 + y2 donc
{

et on a l’inégalité classique

Exercice 5 :

1. Calculer lim
(x,y)→(1,2)

x2 − 3y + xy.

2. Calculer lim
(x,y)→(0,0)

xy2

x2+y2 .

3. Calculer lim
(x,y)→(0,0)

xy√
x2+y2

.

4. Montrer à l’aide de la caractérisation séquentielle de la limite que x+y2

x2+y2 n’admet pas de limite en
(0, 0).

Définition 6 – extension – limite infinie pour une fonction réelle

Soit f : A ⊂ E → R et a un point adhérent à A.
• On dit que f tend vers +∞ en a si :

∀M ∈ R, ∃α > 0, ∀x ∈ A, ∥x − a∥ < α ⇒ f(x) ⩾ M

• On dit que f tend vers −∞ en a si :

∀M ∈ R, ∃α > 0, ∀x ∈ A, ∥x − a∥ < α ⇒ f(x) ⩽ M

Définition 7 – extension – limite quand ∥x∥ → +∞

Soit f : A ⊂ E → F avec A partie non bornée.
On dit que f tend vers ℓ quand ∥x∥ → +∞ si :

∀ε > 0, ∃K ∈ R+, ∀x ∈ A, ∥x∥ ⩾ K ⇒ ∥f(x) − ℓ∥ < ε

On note lim
∥x∥→+∞

f(x) = ℓ.

Définition 8 – extension – limite en ±∞ quand A ⊂ R

• Si −∞ est adhérent à A (cas où A n’est pas minorée), on dit que f tend vers ℓ en −∞ si :

∀ε > 0, ∃K ∈ R, ∀x ∈ A, x ⩽ K ⇒ ∥f(x) − ℓ∥ < ε

• Si +∞ est adhérent à A (cas où A n’est pas majorée), on dit que f tend vers ℓ en +∞ si :

∀ε > 0, ∃K ∈ R, ∀x ∈ A, x ⩾ K ⇒ ∥f(x) − ℓ∥ < ε
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Je vous laisse définir, quand f est à valeurs réelles, lim
∥x∥→+∞

f(x) = +∞ et lim
∥x∥→+∞

f(x) = −∞.
On peut également donner une caractérisation séquentielle de la limite dans chacun de ces cas, avec les
conséquences qui en découlent.

Exercice 6 :
1. Dans C, calculer lim

|z|→+∞

1
z + 1.

2. Dans C, pour P polynôme non constant, montrer que lim
|z|→+∞

|P (z)| = +∞.

2.2 continuité
Définition 9

Soit f une application d’une partie D de E à valeurs dans F .
• Lorsque a appartient à D, on dit que f est continue au point a quand lim

x→a
f(x) = f(a).

• On dit que f est continue sur D quand elle est continue en tout point de D.
• Lorsque a n’appartient pas à D et que f admet une limite ℓ en a, on dit que f se prolonge

par continuité en a.

Les résultats établis sur les limites nous apportent la continuité : d’une combinaison linéaire d’applications
continues, du produit d’une application continue avec une application scalaire continue, de la composée
d’applications continues, et dans le cas d’une fonction à valeurs dans K, de l’inverse d’une fonction
continue ne s’annulant pas.
Nous avons aussi la caractérisation séquentielle de la continuité : f est continue en a si pour toute suite
(xn) d’éléments de A tendant vers a, la suite (f(xn)) tend vers f(a).

Propriété 9

Deux applications continues qui coïncident sur une partie dense sont égales.

Définition 10

Soit k ⩾ 0. On dit que l’application f est k-lipschitzienne ou lipschitzienne de rapport k si :

∀(x, y) ∈ A2, ∥f(x) − f(y)∥ ⩽ k∥x − y∥

Cette définition dépend des normes utilisées dans E et F . Mais des normes équivalentes définissent les
mêmes applications lipschitziennes (pas forcément de même rapport).

Propriété 10

Toute application lipschitzienne est continue.

Exercice 7 : Montrer la continuité des applications suivantes (vous comprendrez tout seuls les ensembles)

(x1, . . . , xn) 7→ xi, z 7→ Re(z) et z 7→ Im(z), A 7→ ai,j
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Propriété 11 –P– exercice classique

Soit (E, ∥.∥) un espace vectoriel normé. Les applications x 7→ ∥x∥ et x 7→ d(x, A) sont
1-lipschitziennes donc continues sur E.

Application : si f est continue, x 7→ ∥f(x)∥ est continue, comme composée des applications f et y 7→ ∥y∥.

2.3 continuité uniforme

La définition suivante généralise la notion de continuité uniforme déjà vue en première année pour les
fonctions d’une variable réelle. Vous avez notamment rencontré le théorème de Heine (que dit-il ?), sur
lequel nous reviendrons plus loin.

Définition - propriété 4

On dit que f est uniformément continue si :

∀ε > 0, ∃η > 0, ∀(x, y) ∈ A2, ∥x − y∥ ⩽ η ⇒ ∥f(x) − f(y)∥ ⩽ ε

On peut énoncer la définition avec des inégalités strictes ou larges.

Propriété 12

On a les implications :�



�
	f lipschitzienne ⇒

�



�
	f uniformément continue ⇒

�



�
	f continue

Les réciproques sont fausses.

2.4 images réciproques et continuité

Propriété 13

Soit f : A ⊂ E → F une application continue.
• L’image réciproque par f de tout ouvert de F est un ouvert relatif de A.
• L’image réciproque par f de tout fermé de F est un fermé relatif de A.

En particulier, pour f : E → F continue, l’image réciproque d’un ouvert est un ouvert de E,
l’image réciproque d’un fermé est un fermé de E.

Ce résultat est très utile pour montrer qu’une partie est ouverte/fermée. Par exemple, si φ : E → R
est continue, alors :

{x ∈ E, φ(x) > 0} = φ−1(]0, +∞[) est un ouvert ; {x ∈ E, φ(x) ⩾ 0} = φ−1([0, +∞[) est fermé ;

{x ∈ E, φ(x) = 0} = φ−1({0}) est fermé.

Exercice 8 : Montrer que {(x, y) ∈ R2, −1 ⩽ x ⩽ y ⩽ 1} est un fermé de R2. Le représenter.

Exercice 9 : Exercice récapitulatif. Montrer de trois façons que Z est un fermé de R :
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1. par la définition d’un fermé,
2. par la caractérisation séquentielle des fermés,
3. en tant qu’image réciproque d’un fermé par une application continue (on pourra penser à une

fonction trigonométrique).

3 Applications linéaires et multilinéaires continues et normes d’opé-
rateurs

3.1 critère de continuité des applications linéaires

Propriété 14 – critère de continuité des applications linéaires

Soit u : E → F une application linéaire. u est continue si et seulement s’il existe C réel positif tel
que

∀x ∈ E, ∥u(x)∥ ⩽ C∥x∥

On peut reformuler ce théorème : pour qu’une application linéaire soit continue, il faut et il suffit qu’elle
soit lipschitzienne, qu’elle soit uniformément continue, qu’elle soit bornée sur la boule unité. Je vous laisse
y réfléchir !

Méthode – justifier la continuité (ou non) d’une application linéaire

On peut :
• regarder la dimension de E. Nous verrons que lorsque E est de dimension finie, toute appli-

cation linéaire de E dans F est continue.
• majorer ∥u(x)∥ afin de trouver C tel que pour tout x ∈ E, ∥u(x)∥ ⩽ C∥x∥ et appliquer le

critère de continuité des applications linéaires.
• raisonner par l’absurde en supposant que u satisfait le critère de continuité des applications

linéaires et trouver une suite (xn) rendant absurde l’inégalité ∥u(xn)∥ ⩽ C∥xn∥ (souvent, en
faisant tendre n vers l’infini).

Exercice 10 : Soit l’application linéaire u :
(

E = C([0, 1],K) → K
f 7→ f(1)

)
.

1. Montrer que si on munit E de la norme ∥.∥∞, alors u est continue.
2. Montrer que si on munit E de la norme ∥.∥1, alors u n’est pas continue.

Exercice 11 : Soit E un espace préhilbertien réel et soit a ∈ E. Montrer que l’application linéaire
x 7→ ⟨x|a⟩ est continue.

Exercice 12 : On munit l’espace vectoriel E des suites bornées de RN de la norme infinie ∥.∥∞.
1. Montrer que l’endomorphisme ∆ de E donné par ∆((un)n∈N) = (un+1 − un)n∈N est continu.
2. En déduire que l’ensemble des suites constantes est un fermé de E.

3.2 espace Lc(E, F ) et norme subordonnée

On note Lc(E, F ) l’ensemble des applications linéaires continues de E dans F .
Comme Lc(E, F ) = L (E, F ) ∩ C(E, F ), Lc(E, F ) est un sous-espace vectoriel de L (E, F ).
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Propriété 15

Soient E et F des espaces vectoriels normés et u ∈ Lc(E, F ). Alors les trois bornes supérieures
suivantes sont finies et égales :

sup
x∈E\{0}

∥u(x)∥
∥x∥

= sup
∥x∥⩽1

∥u(x)∥ = sup
∥x∥=1

∥u(x)∥

On note |||u||| ou ∥u∥op leur valeur commune.

L’application u ∈ Lc(E, F ) 7→ |||u||| est une norme sur Lc(E, F ) appelée norme d’opérateur
ou norme subordonnée aux normes ∥.∥E et ∥.∥F .

�



�
	Par définition, si u ∈ Lc(E, F ), ∀x ∈ E, ∥u(x)∥ ⩽ |||u|||.∥x∥

Exercice 13 : Soit E = Mn(K).
1. Déterminer la norme d’opérateur de l’application Trace quand on munit E de la norme

∥M∥∞ = sup
1⩽i,j⩽n

|mi,j |

2. Déterminer la norme d’opérateur de l’application Trace quand on munit E de la norme

∥M∥1 =
n∑

i=1

n∑
j=1

|mi,j |

Exercice 14 : On considère E = C([0, 1],K) muni de la norme ∥.∥1. Soit T l’application linéaire qui à
f ∈ E associe sa primitive s’annulant en 0. Montrer que T est continue et, en considérant les fonctions
fn : t 7→ (1 − t)n, calculer |||T |||.

Méthode – pour montrer que |||f ||| = D

• On montre que ∀x ∈ E, ∥f(x)∥ ⩽ D∥x∥. Ainsi f est continue.

Pour tout x ̸= 0, on a ∥f(x)∥
∥x∥

⩽ D. Donc |||f ||| ⩽ D.

• On repart alors de :

∀x ∈ E, ∥f(x)∥ ⩽ |||f ||| ∥x∥ soit ∀x ̸= 0,
∥f(x)∥

∥x∥
⩽ |||f |||

Puis on peut :
— éventuellement déterminer un vecteur x ∈ E non nul tel que ∥f(x)∥

∥x∥ = D

— ou déterminer une suite (xn) de vecteurs non nuls de E telle que lim
n→+∞

∥f(xn)∥
∥xn∥ = D.

Ceci montre que |||f ||| ⩾ D. En définitive, |||f ||| = D.

Propriété 16

Pour u ∈ Lc(E, F ) et v ∈ Lc(F, G), on a |||v ◦ u||| ⩽ |||v||| · |||u|||. On dit que |||.||| est sous-
multiplicative.
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Définition 11 – adaptation matricielle

Supposons Kn et Kp munis d’une norme. On appelle norme subordonnée de la matrice
A ∈ Mn,p(K), et on note |||A|||, la norme de l’application linéaire canoniquement associée à A.
|||.||| définit ainsi une norme sur Mn,p(K).

On a pour X colonne, |||A||| = sup
X ̸=0

∥AX∥
∥X∥

= sup
∥X∥⩽1

∥AX∥ = sup
∥X∥=1

∥AX∥.

|||.||| est sous-multiplicative. Pour A et B dans Mn(K), |||AB||| ⩽ |||A|||.|||B|||.

Exercice 15 : Déterminer |||A||| pour A matrice de Mn(K) ne comportant que des 1, quand Kn est muni
de la norme infinie.

3.3 applications multilinéaires

Dans ce paragraphe, E1, E2, . . . , Ep et F désignent des K-espaces vectoriels normés, et E1 × · · · × Ep est
muni de la norme produit.
On rappelle qu’une application φ : E1 × · · · × Ep → F est multilinéaire, ou p-linéaire, si elle est linéaire
en chacune de ses variables, c’est-à-dire que pour tout (x1, . . . , xp) ∈ E1 × · · · × Ep et tout i ∈ J1, pK,

y 7→ φ(x1, . . . , xi−1, y, xi+1, . . . , xp) ∈ L (Ei, F )

Conformément au programme, nous admettons la propriété suivante.

Propriété 17 – critère de continuité des applications multilinéaires

Une application multilinéaire φ : E1 × · · · × Ep → F est continue si, et seulement s’il existe C ⩾ 0
tel que :

∀(x1, . . . , xp) ∈ E1 × · · · × Ep, ∥φ(x1, . . . , xp)∥ ⩽ C · ∥x1∥ · ∥x2∥ · . . . · ∥xp∥

Nous verrons plus loin que si E1, E2, . . . , Ep sont de dimension finie, toute application multilinéaire
φ : E1 × · · · × Ep → F est continue.

Exercice 16 : Soit E un espace euclidien. Montrer que l’application produit scalaire est continue. Même
question lorsque E est un espace préhilbertien réel.

4 Parties compactes d’un espace vectoriel normé

4.1 notion de compacité

Nous avons vu dans le chapitre Espaces vectoriels normés qu’on appelle :
— suite extraite ou sous-suite de (un)n∈N toute suite de la forme (uφ(n))n∈N où φ : N → N est

strictement croissante.
— valeur d’adhérence de (un)n∈N toute limite ℓ ∈ E de sous-suite de (un)n∈N.

Une suite converge vers ℓ ∈ E si, et seulement si, toutes ses sous-suites convergent vers ℓ. La limite est
donc l’unique valeur d’adhérence d’une suite convergente. En revanche, une suite qui possède une seule
valeur d’adhérence n’est pas forcément convergente.
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Définition 12
On dit qu’une partie A d’un espace vectoriel normé E est une partie compacte ou un compact si
toute suite d’éléments de A admet une sous-suite qui converge dans A.

Remarques :
— On peut reformuler : A est compacte si, et seulement si, toute suite d’éléments de A possède au

moins une valeur d’adhérence dans A..
— La définition d’une partie compacte s’appuie sur la convergence des suites. Elle dépend donc de la

norme utilisée. Mais deux normes équivalentes définissent les mêmes compacts.
— Toute partie finie est compacte.
— Toute partie fermée et bornée de R ou C est compacte.

Propriété 18

Toute partie compacte est fermée et bornée.

Exercice 17 : Nous verrons qu’en dimension finie, la réciproque est vraie. Mais en général, la réciproque
est fausse. On munit K[X] de la norme ∥.∥∞, où pour P = ∑

k∈N
akXk, ∥P∥∞ = sup{|ak|, k ∈ N}.

On considère la sphère unité S. Vérifier que S est fermée et bornée mais non compacte.

Propriété 19

Tout fermé inclus dans un compact est compact.

Théorème 1
Une suite d’éléments d’une partie compacte converge si, et seulement si, elle admet une unique
valeur d’adhérence.

Propriété 20 – produit de compacts

Soient E1, . . . , Ep des espaces vectoriels normés et A1, . . . , Ap des compacts de E1, . . . , Ep respec-
tivement. Alors A1 × · · · × Ap est un compact de l’espace produit E1 × · · · × Ep.

4.2 ♡ continuité et compacité

Théorème 2
L’image d’un compact par une application continue est un compact.

On déduit de ce théorème la généralisation du théorème de première année : « toute fonction continue sur
un segment est bornée et atteint ses bornes ». Ce résultat sera très utile dans les problèmes d’optimisation,
pour prouver l’existence d’un maximum ou d’un minimum.

Théorème 3 – ♡ théorème des bornes atteintes

Toute fonction continue sur un compact et à valeurs dans R, est bornée et atteint ses bornes.
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Théorème 4 – théorème de Heine
Toute application continue sur un compact y est uniformément continue.

5 Espaces vectoriels normés de dimension finie

5.1 équivalence des normes en dimension finie

Théorème 5
Dans un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Ce puissant théorème est admis, conformément au programme. Rappelons (propriété rencontrée au cha-
pitre Espaces vectoriels normés) que la convergence d’une suite équivaut à celle de ses suites composantes
dans une base. De même, si f est une application à valeurs dans un espace de dimension finie, alors
l’étude de la continuité de f (ou plus généralement l’étude de la limite de f en un point) se ramène à
celle de ses applications composantes dans une base.

Exercice 18 (B.E.O.) : On note E l’espace vectoriel des applications continues sur [0, 1] à valeurs dans R.

On pose : ∀f ∈ E, ∥f∥∞ = sup
t∈[0,1]

|f(t)| et ∥f∥1 =
∫ 1

0
|f(t)|dt.

1. Les normes ∥ ∥∞ et ∥ ∥1 sont-elles équivalentes ? Justifier.
2. Dans cette question, on munit E de la norme ∥ ∥∞.

(a) Soit u :
{

E −→ R
f 7−→ f(0)

Prouver que u est une application continue sur E.
(b) On pose F = {f ∈ E / f(0) = 0}.

Prouver que F est une partie fermée de E pour la norme ∥ ∥∞.
3. Dans cette question, on munit E de la norme ∥ ∥1.

Soit c :
{

[0, 1] −→ R
x 7−→ 1

On pose : ∀n ∈ N∗, fn(x) =


nx si 0 ⩽ x ⩽

1
n

1 si 1
n

< x ⩽ 1

(a) Soit n ∈ N∗. Calculer ∥fn − c∥1.
(b) On pose F = {f ∈ E / f(0) = 0}.

On note F̄ l’adhérence de F .
Prouver que c ∈ F̄ .
F est-elle une partie fermée de E pour la norme ∥ ∥1 ?

5.2 compacts en dimension finie

Théorème 6
Dans un espace vectoriel de dimension finie, les compacts sont les fermés bornés.

Nous en déduisons par exemple :
— En dimension finie, la boule unité fermée et la sphère unité sont compactes.
— Toute application continue sur un fermé borné en dimension finie et à valeurs dans R est bornée

et atteint ses bornes.
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Théorème 7 – théorème de Bolzano-Weierstrass
De toute suite bornée d’un espace vectoriel F de dimension finie, on peut extraire une sous-suite
convergeant dans F .

Propriété 21

Dans un espace vectoriel normé, tout sous-espace de dimension finie est fermé.

Par exemple, Sn(K) et An(K) sont des fermés de Mn(K). Autrement dit, toute limite de suites de matrices
symétriques est une matrice symétrique.

5.3 continuité des applications (multi)linéaires et polynomiales

Théorème 8
• Si E est de dimension finie, toute application linéaire de E dans F est continue.
• Si E1, . . . , Ep sont de dimension finie, toute application multilinéaire de E1 × · · · × Ep dans

F est continue.

Exercice 19 : Soit P une matrice inversible d’ordre n. Montrer que M 7→ P −1MP est continue sur Mn(K).

Exercice 20 : Montrer que l’ensemble des matrices de trace strictement positive est un ouvert de Mn(R).

Exercice 21 : Soit B une base d’un espace vectoriel E de dimension finie n. Montrer que detB est continue
sur En.

P Exercice 22 :
1. Montrer que le produit matriciel p : (A, B) 7→ AB est continu sur (Mn(K))2.
2. Montrer que la composition c : (f, g) 7→ g ◦ f est continue sur (Lc(E))2.

Définition 13
On appelle :

— monôme sur Kp toute application f : Kp → K de la forme

(x1, . . . , xp) 7→ xn1
1 xn2

2 . . . xnp
p où les ni sont entiers naturels

— fonction polynomiale sur Kp toute combinaison linéaire de monômes.

Par exemple, P : (x, y, z) 7→
√

2xy5 − xyz2 + z est une fonction polynomiale sur R3.
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Définition 14

Soit (e1, . . . , ep) une base de E. On appelle :
— monôme sur E toute application f : E → K de la forme

x =
p∑

i=1
xiei 7→ xn1

1 xn2
2 . . . xnp

p où les ni sont entiers naturels

— fonction polynomiale sur E toute combinaison linéaire de monômes.

Remarque : si f est une fonction polynomiale dans une base B, c’est encore une fonction polynomiale
dans une base B′. Par formule de changement de bases, X = PX ′, donc si f est polynomiale en les xi,
elle est aussi polynomiale en les x′

i.

Propriété 22

Toute application polynomiale d’un espace vectoriel de dimension finie est continue.

Par exemple, l’application M 7→ M3 est continue car les coefficients de M3 sont polynomiaux en les
coefficients de M .

P Exercice 23 : Montrer que det : M 7→ det(M) est continue sur Mn(K). Montrer que GLn(K)
est un ouvert de Mn(K). Rappeler GLn(K) (qu’on a rencontré dans un exercice plus haut).

6 Parties connexes par arcs d’un espace vectoriel normé
E désigne toujours un espace vectoriel normé.

Définition 15

Soit (a, b) ∈ E2. On appelle chemin (ou arc) continu joignant a à b toute application continue γ
de [0, 1] dans E telle que γ(0) = a et γ(1) = b.

Par exemple, pour relier a et b par ce qu’on appelle un segment, on prend le chemin :
γ(t) =

Définition 16

Une partie A de E est connexe par arcs si pour tout (a, b) ∈ A2, il existe un chemin continu
joignant a à b à valeurs dans A.

Remarques :
— Par exemple, les parties convexes de E sont connexes par arc, puisqu’on peut relier deux points de

cette partie par un chemin continu (un segment), en restant dans la partie.
— On pourrait remplacer le segment [0, 1] par n’importe quel autre segment de R.
— L’existence d’un chemin continu entre a et b revient schématiquement à joindre les deux points à

l’aide d’un stylo sans lever le crayon.
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Propriété 23

On définit : a R b s’il existe un chemin continu à valeurs dans A joignant a et b. La relation binaire
ainsi définie est une relation d’équivalence.
Les classes d’équivalence sont les composantes connexes par arcs.

Une partie est connexe par arcs si et seulement si elle
n’admet qu’une seule composante connexe par arcs.
Ci-contre, nous avons trois composantes connexes
par arcs, chacune est connexe par arcs.

Il résulte de la transitivité de R que les parties étoi-
lées (parties A pour lesquelles il existe a ∈ A tel que
pour tout x ∈ A, [a, x] ⊂ A) sont connexes par arcs.

a
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Propriété 24

Les parties connexes par arcs de R sont les intervalles.

Propriété 25

Soient f : E → F une application continue et A une partie connexe par arcs de E. Alors f(A) est
connexe par arcs.

Exemple : U est connexe par arcs car c’est l’image
de R, connexe par arcs, par la fonction continue

. . . . . . . . . . . . R

U

Corollaire 1 – théorème des valeurs intermédiaires généralisé

Pour f : E → R continue, l’image de toute partie connexe par arcs est un intervalle.

Exemple : GLn(R) n’est pas connexe par arcs. En effet, det(GLn(R)) = R∗, det est continue, et R∗ n’est
pas connexe par arcs.

Exercice 24 (CCINP 2025) :
1. Soit une application f :] − 1, 1[→ R2 de classe C1. Justifier que f ′(] − 1, 1[) est une partie connexe

par arcs de R2.
2. On considère l’application f :] − 1, 1[→ R2 définie par :

f(t) =
{

(0, 0) si t ∈] − 1, 0]
(t2 sin 1

t , t2 cos 1
t ) si t ∈]0, 1[

On note, pour tout (x, y) ∈ R2, ∥(x, y)∥2 =
√

x2 + y2.
(a) Démontrer que f est dérivable en 0 puis sur l’intervalle ] − 1, 1[. Préciser le vecteur f ′(t) pour

tout t ∈] − 1, 0] et pour tout t ∈]0, 1[.
(b) Démontrer que : ∀t ∈]0, 1[, ∥f ′(t)∥2 ⩾ 1 et en déduire que f ′(] − 1, 1[) n’est pas connexe par

arcs de R2. On pourra tracer la boule unité de R2 pour ∥.∥2 et on acceptera un dessin pertinent
comme preuve.
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7 Annexe : quelques éléments de démonstrations
Propriété 1
• Faire un schéma évidemment !
Soit x ∈ B(a, r). On a ∥x− a∥ < r. Soit y ∈ B(x, r − ∥x− a∥). On a

∥y − a∥ ⩽ ∥y − x∥ + ∥x− a∥ < r − ∥x− a∥ + ∥x− a∥

donc ∥y − a∥ < r et y ∈ B(a, r).

• Soit x ̸∈ Bf (a, r). On a ∥x− a∥ > r. Soit y ∈ B(x, ∥x− a∥ − r).

∥x− a∥ ⩽ ∥y − a∥ + ∥x− y∥ < ∥y − a∥ + ∥x− a∥ − r

donc r < ∥y − a∥ et y ̸∈ Bf (a, r).

Propriété 3
Soit a = (a1, . . . , ap) ∈ U1 × · · · × Up. Pour tout i compris entre 0 et p, il existe ri > 0 tel que B(ai, ri) ⊂ Ui (boule pour
la norme Ni). Posons r = min(r1, . . . , rp). On a r > 0. Soit x ∈ B(a, r) (boule pour la norme produit). On rappelle que la
norme produit est définie par

N(t) = max
1⩽i⩽r

Ni(ti)

Donc pour tout i, Ni(xi − ai) ⩽ N(x− a) < r ⩽ ri, et donc xi ∈ Ui, et x est dans le produit des Ui.

Pour un produit de fermés, c’est plus pratique d’utiliser la caractérisation séquentielle des fermés. On passe.

Propriété 4
• Supposons que A est un fermé et soit (xn) une suite d’éléments de A qui converge vers ℓ.
Par l’absurde, supposons que ℓ ̸∈ A. Comme E \A est un ouvert, il existe un voisinage de ℓ contenu dans E \A, autrement
dit, il existe r > 0 tel que B(ℓ, r) ⊂ E \A.
Comme xn tend vers ℓ, ce voisinage de ℓ contient tous les xn à partir d’un certain rang n0 :

∃n0 ∈ N / ∀n ⩾ n0, ∥xn − ℓ∥ < r et donc xn ∈ B(ℓ, r) ⊂ E \A

Ceci contredit : xn ∈ A.

• Supposons que toute suite d’éléments de A qui converge a sa limite dans A. Raisonnons là encore par l’absurde en
supposant que A n’est pas un fermé. Alors E \A n’est pas un ouvert. Il existe y ∈ E \A tel que pour tout n ∈ N∗, B(y, 1

n
)

n’est pas contenue dans E \ A. Pour tout n ⩾ 1, il existe xn ∈ B(y, 1
n

) tel que xn ∈ A. Ceci nous fournit une suite (xn)
d’éléments de A qui tend vers y ̸∈ A. C’est exclu.

Propriété 5
Je ne montrerai, au mieux, que la propriété sur les ouverts (celle avec les fermés est difficile à suivre).
• Montrons que Å est le plus grand ouvert inclus dans A. Pour cela, montrons que Å = Ω où Ω est la réunion de tous les
ouverts inclus dans A (c’est donc bien un ouvert de E).

— Soit x ∈ Å. Il existe r > 0 tel que B(x, r) ⊂ A et B(x, r) est un ouvert, donc B(x, r) ⊂ Ω. Ainsi, x ∈ Ω.
— Soit x ∈ Ω. x appartient à un ouvert inclus dans A donc appartient à une boule incluse dans A : x ∈ Å.

• Montrons que A est égal à F , intersection de tous les fermés contenant A (ainsi A est un fermé).
— Soit x ∈ F .

Si x ̸∈ A, alors il existe r > 0 tel que B(x, r) ∩ A = ∅. On a alors B(x, r) ⊂ E \ A, puis A ⊂ E \ B(x, r). Mais
E \ B(x, r) apparaît alors comme un fermé qui contient A. Donc F ⊂ E \ B(x, r). Ce qui est contradictoire avec
x ∈ F ... donc x ∈ A.

— Soit x ∈ A. Par l’absurde, supposons que x ̸∈ F .
E \ F est un ouvert, donc il existe r > 0 tel que B(x, r) ⊂ E \ F . On a F ⊂ E \B(x, r).
Donc A ⊂ F ⊂ E \B(x, r). Et enfin, B(x, r) ⊂ E \A, ce qui contredit x ∈ A. Donc x ∈ F .

• La frontière est un fermé puisque Fr(A) = A ∩ (E \ Å).

Propriété 6
• Soit x ∈ A.
Pour tout n ∈ N, B(x, 1

n+1 )∩A ̸= ∅ donc il existe xn ∈ B(x, 1
n+1 )∩A. La suite (xn) est une suite d’éléments de A convergeant

vers x.
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• Soit x limite d’une suite (an) d’éléments de A.
Soit r > 0. B(x, r) contient tous les an pour n suffisamment grand, donc B(x, r) ∩A ̸= ∅. Donc x ∈ A.

Propriété 7
Montrons l’invariance des fermés par usage de normes équivalentes. Soit A une partie de E fermée pour la norme N .
Soit (un) une suite d’éléments de A convergeant vers ℓ pour N ′. On a vu au chapitre Espaces vectoriels normés que (un)
convergeait également pour la norme N . Comme A est fermé pour N , ℓ ∈ A.
Donc A est un fermé pour N ′.
Comme les ouverts sont les complémentaires des fermés, on a aussi l’invariance des ouverts par usage de normes équivalentes.

Propriété 8
• Supposons lim

a
f = ℓ. Soit (un) une suite d’éléments de A qui tend vers a.

Soit ε > 0. Il existe α > 0 tel que pour x ∈ B(a, α) ∩A, on a f(x) ∈ B(ℓ, ε).
Par convergence de u vers a, il existe un rang n0 tel que pour n ⩾ n0, un ∈ B(a, α). On a donc ∥f(un) − ℓ∥ < ε.
La suite (f(un)) tend vers ℓ.

• Pour l’autre implication, on raisonne par contraposée. Supposons que f ne tende pas vers ℓ quand x tend vers a. Il
existe ε > 0 tel que pour tout αn = 1

n+1 > 0, il existe xn ∈ B(a, αn) ∩A tel que f(xn) ̸∈ B(ℓ, ε).
Comme ∥xn − a∥ < 1

n+1 , on a lim xn = 0. Comme ∥f(xn) − ℓ∥ ⩾ ε, (f(xn)) ne tend pas vers ℓ.

Propriété 9
Soient D une partie dense dans A, et g et f telles que : ∀x ∈ D, f(x) = g(x). Soit a ∈ A. Par densité de D dans A, il existe
(xn) une suite d’éléments de D de limite a. On a f(xn) = g(xn) pour tout n. Par continuité de f et g en a, f(xn) → f(a)
et g(xn) → g(a). Par unicité de la limite d’une suite, f(a) = g(a).

Propriété 10
C’est tout simplement immédiatement le théorème d’encadrement !

Propriété 12
• Soit f une application k-lipschitzienne. Soit ε > 0.
On pose η = ε

k+1 . Pour x et y dans A vérifiant ∥x− y∥ ⩽ η, on a

∥f(x) − f(y)∥ ⩽ k∥x− y∥ ⩽ ε

f est donc uniformément continue.
• La continuité uniforme entraîne la continuité (facile).
• Soit f : x 7→ x2. f est continue sur R. Montrons que f n’est pas uniformément continue.
On prend ε = 1. Il existe η > 0 tel que |x− y| ⩽ η ⇒ |x2 − y2| ⩽ 1. Pour x réel et y = x+ η, on trouve :

∀x ∈ R, |2ηx+ η2| ⩽ 1

c’est contradictoire (avec x → +∞).

• Soit f :
(

R+ → R
x 7→

√
x

)
. Montrons que f est uniformément continue sur R+ et n’est pas lipschitzienne.

Raisonnons par l’absurde en supposant que f est k-lipschitzienne. Je prends y = 0, ça donne |
√
x| ⩽ k|x|, puis pour x > 0,

1 ⩽ k
√
x. Contradictoire avec x → 0.

Lemme : |
√
x− √

y| ⩽
√

|x− y|.
Vrai car équivalent à x+y−2√

xy ⩽ |x−y|, et dans le cas où x ⩾ y, équivalent à x+y−2√
xy ⩽ x−y puis 2√

y(√y−
√
x) ⩽ 0,

ce qui est vrai.

Soit ε > 0. On pose η = ε2 > 0. Si |x− y| ⩽ η, alors |
√
x− √

y| ⩽ ε.

Propriété 13 dans le cas où A = E
Soit f : E → F une application continue.

• Soit U un ouvert de F .
Soit a ∈ f−1(U). On a f(a) ∈ U , et comme U est ouvert, il existe r > 0 tel que B(f(a), r) ⊂ U .
Par continuité de f en a, il existe η > 0 tel que pour x ∈ B(a, η), on ait f(x) ∈ B(f(a), r). Ainsi pour x ∈ B(a, η),
x ∈ f−1(U).
B(a, η) ⊂ f−1(U).

• Soit R un fermé de F . Soit (xn) une suite convergente (vers ℓ) d’éléments de f−1(R).
Comme f est continue en ℓ, lim f(xn) = f(ℓ). Comme (f(xn)) est une suite de F et que F est fermé, f(ℓ) ∈ R. Donc
ℓ ∈ f−1(R).
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Propriété 14 : critère de continuité des applications linéaires
• Soit u ∈ L (E,F ) continue. On a lim

x→0
u(x) = u(0) = 0 et on prend ε = 1 dans la définition de la continuité en 0 :

∃η > 0, ∥t∥ ⩽ η ⇒ ∥u(x)∥ ⩽ 1

Soit x ∈ E. Si x = 0, on a ∥u(0)∥ = ∥0∥. Si x ̸= 0, on prend t = η
∥x∥x et on a ∥t∥ ⩽ η. Donc

∥u( η

∥x∥x )∥ ⩽ 1 et par linéarité de u, η

∥x∥∥u(x)∥ ⩽ 1

C = 1
η

convient.

• On suppose l’existence de C tel que pour x ∈ E, ∥u(x)∥ ⩽ C∥x∥. Soit a ∈ E.

∥u(x− a)∥C ⩽ ∥x− a∥ et par linéarité de u, ∥u(x) − u(a)∥ ⩽ C∥x− a∥

Par le théorème d’encadrement, lim
x→0

u(x) = u(a).

Propriété 15
• L’ensemble { ∥u(x)∥

∥x∥ , x ∈ E \ {0}} est une partie non vide et majorée de R (majorée d’après le critère de continuité des
applications linéaires). Donc cet ensemble admet une borne supérieure. Même chose pour l’existence des deux autres bornes
supérieures. On a facilement

(∗) sup
x∈E\{0}

∥u(x)∥
∥x∥ ⩾ sup

x∈E,∥x∥=1
∥u(x)∥ et (∗∗) sup

x∈E\{0},∥x∥⩽1
∥u(x)∥ ⩾ sup

x∈E,∥x∥=1
∥u(x)∥

— Soit x ∈ E \ {0}. Par linéarité de u,

∥u(x)∥ = ∥x∥∥u( x

∥x∥ )∥ ⩽ ∥x∥ sup
t∈E, ∥t∥=1

∥u(t)∥

et donc ∥u(x)∥
∥x∥ ⩽ sup

t∈E, ∥t∥=1
∥u(t)∥.

Par passage au sup, sup
x∈E\{0}

∥u(x)∥
∥x∥ ⩽ sup

t∈E, ∥t∥=1
∥u(t)∥. On a donc une égalité dans (∗).

— Soit x non nul de norme inférieure ou égale à 1. x
∥x∥ est de norme 1. On a donc

∥u( x

∥x∥ )∥ ⩽ sup
t∈E, ∥t∥=1

∥u(t)∥

∥u(x)∥
∥x∥ ⩽ sup

t∈E, ∥t∥=1
∥u(t)∥

∥u(x)∥ ⩽ ( sup
t∈E, ∥t∥=1

∥u(t)∥) × ∥x∥ ⩽ ( sup
t∈E, ∥t∥=1

∥u(t)∥)

On a donc une égalité dans (∗∗).

• Vérifions que |||.||| est une norme.
Séparation : ∀x ∈ E, ∥u(x)∥ ⩽ |||u|||.∥x∥ donc si |||u||| = 0, alors ∥u(x)∥ = 0 pour tout x, puis u = 0L (E).
Inégalité triangulaire : Soient u et w des applications linéaires continues. Soit x un vecteur de norme 1.

∥(u+ w)(x)∥ = ∥u(x) + w(x)∥ ⩽ ∥u(x)∥ + ∥w(x)∥ ⩽ |||u||| + |||w|||

Et donc |||u+ w||| ⩽ |||u||| + |||w|||.
Homogénéité : Soit λ dans K.

|||λu||| = sup{∥λu(x)∥, ∥x∥ = 1} = sup{|λ|∥u(x)∥, ∥x∥ = 1}

On a vu au chapitre Espaces vectoriels normés que pour k ∈ R+, sup(kA) = k sup(A). Donc

|||λu||| = |λ| sup{∥u(x)∥, ∥x∥ = 1} = |λ| · |||u|||

Propriété 16
Facile : ∥v(u(x))∥ ⩽ |||v||| · ∥u(x)∥ ⩽ |||v||| · |||u||| · ∥x∥.

Toute partie finie est compacte (page 14)
Soit u une suite à valeurs dans {a1} ∪ · · · ∪ {ap}. Il existe i tel que {ai} contienne une infinité de termes de la suite. Soit v
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la sous-suite de u constituée de tous les termes de u qui valent ai. v est constante, et converge vers ai.

Toute partie fermée et bornée de R ou C est compacte (page 14)
Soit A une partie fermée et bornée de R ou C. Soit u une suite de A.
Par le théorème de Bolzano-Weierstrass vu en première année, de toute suite bornée de C, on peut extraire une sous-suite
convergente. Donc on peut extraire de u une sous-suite convergente. Cette sous-suite est constituée d’éléments de A, et A
est fermé, donc la limite de la sous-suite est dans A.

Propriété 18
Soit A une partie compacte de E.
• A est fermée. En effet, soit u une suite d’éléments de A convergeant vers ℓ. Par compacité de A, il existe une sous-suite
qui converge dans A. Or toutes les sous-suites d’une suite convergente tendent vers ℓ. Donc ℓ ∈ A.
• A est bornée. Supposons qu’elle ne le soit pas. On pourrait alors construire pour tout n ∈ N, xn ∈ A tel que ∥xn∥ > n.
On a lim ∥xn∥ = +∞. Donc lim ∥xφ(n)∥ = +∞ (au besoin φ(n) ⩾ n donne limφ(n) = +∞). Donc (xφ(n)) diverge.

Propriété 19
Soit F un fermé inclus dans A compact. Soit (xn) une suite d’éléments de F .
Comme A est compact, on peut extraire de (xn) une sous-suite convergente. Cette sous-suite est formée de termes apparte-
nant à F et F est fermé. Donc sa limite ℓ appartient à F . On a donc réussi à extraire de (xn) une sous-suite convergente
dans F . F est compact.

Théorème 1
(⇒) vrai même si on n’est pas dans un compact.
(⇐) Soit une suite (un) d’éléments du compact A et admettant une unique valeur d’adhérence a. On veut montrer que (un)
converge vers a. Par l’absurde, si (un) ne tend pas vers a, il existe ε > 0 tel que pour tout n0 ∈ N, il existe n ⩾ n0 tel que
∥un − a∥ > ε.
On arrive avec ça à construire une sous-suite v de (un) telle que ∥vn − a∥ > ε.
Puisque A est compact, on peut extraire une suite convergente de v. Sa limite est une valeur d’adhérence de v, mais aussi
de u, donc vaut a. Donc 0 ⩾ ε. C’est exclu.

Propriété 20 dans le cas de deux espaces
Soit (xn) = (x(1)

n , x
(2)
n ) une suite de A1×A2. Puisque A1 est compact, on peut extraire de (x(1)

n ) une suite convergente (x(1)
φ(n)).

Puisque A2 est compact, on peut extraire de (x(2)
φ(n)) une suite convergente, d’extraction ψ. La suite (xψ(n)) converge, et

converge dans A1 ×A2.
Rappel : une suite définie sur un espace vectoriel normé produit converge si et seulement si chacune des suites composantes
converge.

Théorème 2
Soit f continue et A compact. Soit (yn) = (f(xn)) une suite de f(A).
Puisque A est compact, (xn) admet au moins une valeur d’adhérence : a ∈ A, limite de la sous-suite (xφ(n)).
On a lim xφ(n) = a. Par continuité de f , lim f(xφ(n)) = f(a). Donc (yn) admet au moins une valeur d’adhérence.

Théorème 3 (des bornes atteintes)
Ici f est à valeurs dans R.
f(A) est un compact donc f(A) est fermée et bornée. Donc f est bornée. Et il existe s = sup f(A). Il existe une suite
(sn) = (f(an)) de limite s. Comme f(A) est fermée, s ∈ f(A). Même chose avec l’inf.

Théorème 4 (de Heine)
Même principe que la démonstration de MPSI, valable sur un segment. Nous allons raisonner par l’absurde. Soit f continue
sur A une partie compacte de E. Supposons que f ne soit pas uniformément continue sur A :

∃ε > 0, ∀α > 0, ∃x, y ∈ A, ∥x− y∥ < α et ∥f(x) − f(y)∥ ⩾ ε

Pour tout entier n ∈ N∗, il existe xn, yn ∈ A tels que ∥xn − yn∥ < 1
n

et ∥f(xn) − f(yn)∥ ⩾ ε. On peut extraire de la suite
(xn) (puisque A est compact) une sous-suite convergente (xφ(n)), convergeant vers a ∈ A.
∥xφ(n) − yφ(n)∥ < 1

n
donc (yφ(n)) converge elle aussi vers a.

Par continuité de f , lim f(xφ(n)) = f(a) = lim f(yφ(n)). On a une contradiction dans ∥f(xφ(n)) − f(yφ(n))∥ ⩾ ε.

Théorème 6
On a déjà vu que les compacts sont fermés et bornés.
Réciproquement, soient A une partie fermée et bornée de E, supposé de dimension finie, et une suite (xn) d’éléments de A.
Soit une base (e1, . . . , ep) de E.
Par équivalence des normes, A est fermée et bornée au sens de la norme ∥y∥∞ = max

1⩽k⩽p
|yk|.

∃M ∈ R, ∀y ∈ A, ∥y∥∞ ⩽M
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On écrit xn =
p∑
k=1

x
(k)
n ek. Les suites de coordonnées (x(k)

n )n sont bornées (puisque pour tout n ∈ N , |x(k)
n | ⩽M) et à valeurs

dans K. Elles admettent dont toutes une sous-suite convergente (Bolzano-Weierstrass dans C). Il en va donc de même pour
(xn).

Théorème 7 – Théorème de Bolzano-Weierstrass
Soit u une suite bornée. Il existe M > 0 tel que tous les un appartiennent à Bf (0, R). Cette boule est fermée et bornée.
Comme E est de dimension finie, c’est un compact. Donc (un) admet une valeur d’adhérence // il existe une sous-suite
convergente.

Propriété 21
Soit u une suite convergente d’éléments de F et ℓ sa limite.
Comme u converge, u est bornée. C’est une suite bornée de l’espace vectoriel F de dimension finie. Par le théorème de
Bolzano-Weierstrass, il existe une sous-suite convergente extraite de u, convergeant dans F . Or cette sous-suite converge
vers ℓ. Donc ℓ ∈ F .

Théorème 8
• Soit E est de dimension finie, et u ∈ L (E,F ).
Soit (e1, . . . , ep) une base de E. On munit E de ∥.∥∞ pour cette base.
Pour x = x1e1 + · · · + xpep ∈ E, on a u(x) = x1u(e1) + · · · + xpu(ep).

∥u(x)∥ ⩽ |x1|.∥u(e1)∥ + · · · + |xp|.∥u(ep)∥ ⩽ k∥x∥

où k = ∥u(e1)∥ + · · · + ∥u(ep)∥.

• Démonstration uniquement pour 2 ensembles. Soient E1, E2 de dimension finie, et φ une application bilinéaire de E1 ×E2
dans F .
On prend (e1, . . . , ep) une base de E1. On munit E1 de ∥.∥∞ pour cette base.
On prend (f1, . . . , fq) une base de E2. On munit E2 de ∥.∥∞ pour cette base.

Comme précédemment, on montre que ∥φ(x, y)∥ ⩽ k∥x∥.∥y∥ où k =
p∑
i=1

q∑
j=1

∥φ(ei, fj)∥.

Propriété 22
Soit f : E → K une fonction polynomiale. Si B = (e1, . . . , ep) est une base de E, f est produits et combinaisons linéaires des
formes linéaires coordonnées :

πi : x =
n∑
k=1

xkek 7→ xi

et les πi sont continues en tant qu’applications linéaires avec un espace de départ de dimension finie.

Propriété 23
On montre que la relation binaire R est réflexive, symétrique et transitive.
Réflexivité : a est relié avec lui-même par le chemin continu γ : t 7→ a.
Symétrie : S’il existe un chemin continu γ joignant a et b, t 7→ γ(1 − t) est un chemin continu joignant b et a.
Transitivité : S’il existe un chemin continu γ1 (resp. γ2) joignant a et b (respectivement b et c), alors l’application

γ : t 7→
{
γ1(2t) si t < 1/2
γ2(2t− 1) si t ⩾ 1/2

est un chemin continu (à vérifier !) joignant a et c.

Propriété 24
Soient x, y ∈ A, où A est une partie connexe par arcs de R, et γ : [0, 1] → A un chemin continu les reliant. D’après le théorème
des valeurs intermédiaires (version réelle), l’image d’un intervalle par une fonction continue est un intervalle. γ([0, 1]) est
donc un intervalle de A qui contient x et y. Le segment [x, y] est donc inclus dans A.
On reconnaît la définition d’un intervalle.
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