Séries entieres

Les coefficients des séries entiéres considérées sont réels ou complexes.

Les attentes

10.

11.

® N o e

. Savoir présenter le schéma dans C donnant les situations :

— en termes de série convergente,
— en termes de suite bornée.

Et savoir aussi définir rigoureusement le rayon R de convergence
(sup...).

. Regle de d’Alembert pour les séries entieres. Savoir que pour des

séries lacunaires, il faut revenir a la régle de d’Alembert des séries
numériques.

Théoremes d’équivalence, négligeabilité, domination a partir des co-
efficients.

Série entiere de référence de type Y n%z".

Une série entiere et sa série dérivée ont méme rayon de convergence.
Propriété pour la somme. Propriété du produit de Cauchy.

Ou y a-t-il convergence normale de Y a,, 2" ? Continuité sur D(0, R).

La somme d’une série entiére est de classe C* sur l'intervalle ouvert
de convergence et ses dérivées s’obtiennent par dérivation terme a
terme.

. Expression des coefficients d’'une série entiere de rayon de conver-

gence strictement positif & ’aide des dérivées en 0 de sa somme.
+00 +00

Corollaire : si les fonctions x Z anx” et x — Z b,x™ coincident
n=0 n=0
sur un intervalle ]0, a[ non vide, alors, pour tout n € N, a,, = b,,.

—In(1—z), (1+x)*,

Développements en série entiere usuels : e?, 1T1Z’

cos, sin, ch, sh et domaines de validité.

Savoir développer une fonction en série entiere a l’aide d’une
équation différentielle linéaire.

. Lemme d’Abel.
. Théoréme d’Abel radial.

. Savoir retrouver efficacement le développement en série entiere de

arctan.

On souhaite étudier les fonctions de la forme

+oo +oo
T Z apx”  ou oz Z an2"

ou les coefficients a,, sont réels ou complexes, la variable étant elle aussi réelle ou complexe.
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1 Généralités

Soit ¢ €] —1,1[. On a lim ng"™ = 0 et plus généralement, pour tout réel a,
n—-+0o00

lim n%¢" =0
n—-+oo

1.1 rayon de convergence

—[ Définition 1 }
On appelle série entiére toute série de fonctions de la variable complexe ou réelle de la forme
S a,z" ou (ay) € CN.
Le domaine de convergence est I’ensemble de définition, dans R ou dans C, de la fonction
+00

Zz > apz™.
n=0

—[ Lemme 1 — lemme d’Abel }

Soient (a,) € CN et 2o € C. Si la suite (a,2{) est bornée, alors pour tout z € C tel que |z| < |z,
la série > a,z" converge absolument.

—[ Définition 2 }

On appelle rayon de convergence de la série entiére Y a,z" la borne supérieure :

R =sup{t € R" | la suite (a,t") est bornée}

On a R e R"TU{+o0}.

En vertu du lemme d’Abel, si la suite (a,t") est bornée, alors pour tout z € C tel que |z| < ¢, la suite
(anz") est encore bornée. On a donc la configuration suivante :

(anz") n’est pas bornée

(anz") est bornée

Exercice 1 :
Zn
1. Donner le rayon de convergence de E 2", E —, de E nlz".
n

2. Que dire du rayon de convergence de Y a,z" lorsque la suite (a,) est bornée ?
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,_‘ Propriété 1 l .

Soit > a,z" une série entiere de rayon de convergence R. Soit z € C.
e Si|z| < R, alors ) ayz™ converge absolument.
e Si|z| > R, alors > a,z" diverge grossiérement.

e Si|z| = R, on ne peut rien dire.

—[ Corollaire 1 } <

Avec les mémes notations,

o si Y |anz"| converge, alors R > |z|,
o si Y |anz"| diverge, alors R < |z|.
R =sup{t € R", > a,t" converge absolument}

Exemple : notons R le rayon de convergence de ) sin(n)z".

(sin(n)) est bornée donc

Z sin(n) diverge grossiérement donc

donc
Dans R
Dans C
Divergence grossiere

-R R

Divergence  Convergence Divergence

R
________________ e
grossiere absolue grossiere

Dans le cas réel, le domaine de convergence est un intervalle du type | — R, R], | — R, R| , [-R, R] ou
[—R,R].

Dans le cas complexe, le domaine de convergence est constitué du disque ouvert de convergence et de
points situés sur le cercle d’incertitude.

—{ Définition 3 |

Soit Y a,z™ une série entiere de rayon de convergence R.

o« SiK=R,|— R, R][est appelé intervalle ouvert de convergence.

e SiK=C, D(0,R) ={z € C| |z] < R} est appelé disque ouvert de convergence.
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1.2 détermination pratique du rayon de convergence
Nous présentons quelques pistes :

» utilisation de séries ) a,2{ connues, pour encadrer R

» utilisation de la regle de d’Alembert pour les séries entieres
» utilisation de comparaisons (ay ~ by, a, = O(by))
4

utilisation de séries dérivées.

Méthode — utilisation de séries ) a,2) connues

Si on connait la nature de } a2, on peut en déduire des informations sur le rayon de convergence
R de la série entiere > a,2", en réfléchissant bien sur le schéma page 3.

— Si Y anz{ converge, alors |z9| < R.
— Si Y apzy diverge, alors |zg| > R.

— Si Y apzy est semi-convergente, alors |zg| = R.

Exercice 2 : On a déja mis en ceuvre cette idée plus haut pour Zsin(n)zn. Traiter les exemples de

z" "
jg:‘;; et jg: ;5.

,_[ Propriété 2 — regle de d’Alembert adaptée aux séries entieres }

On suppose que les coefficients a, sont non nuls a partir d’un certain rang et que
ou £ € RT U{+o0}.
— SiéeR**,R:%.
— Sif=0, R = +o0.
— Sif=+o0, alors R =0.

an+1
an

— !
n—-+4o0o

Exercice 3 : Donner le rayon de convergence des séries entiéres suivantes :

Z(n—1)2"z” 2(2;)!2” Zarctan(n)z” Zarctan(%)z”

%\ O Exercice 4 : Déterminer le rayon de convergence de Y n®z"™ pour « réel fixé. Vous pourrez utiliser
ce résultat comme du cours.

Exercice 5 : Séries lacunaires. La série de fonctions 3 a,,2?" peut se comprendre comme une série entiére.
En effet, 3 a,2?" = 3. b,2" en posant bap = ap et bapy1 = 0. Le rayon de convergence d’une telle série

peut souvent se déterminer par la régle de d’Alembert des séries numériques (pas des séries entiéres
puisque les a,, s’annulent une infinité de fois).

1. Déterminer le rayon de convergence de la série entiere lacunaire > (2:) 23,

, . s . N . 2
2. Déterminer le rayon de convergence de la série entiére lacunaire 3 2%2” .
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,_[ Propriété 3 — comparaison de séries entieres ]

Soient > a,2™ et Y b,2"™ deux séries entiéres de rayons de convergence respectifs R, et Rp.
o Sian| < |by| & partir d’un certain rang, alors R, > Ry.
e Sia,=0(b,) oua, =o(b,), alors R, > Ry.

e Sia, ~ b, alors R, = Ry.

,_[ Propriété 4 — séries entieres dérivées }

Les séries entieres > a,z" et > na,z" ont méme rayon de convergence.

Par récurrence, pour tout k € Z, les séries entieres S a,2" et S nFa, 2" ont méme rayon de convergence.
) )

1.3 opérations algébriques sur les séries entieres

,_‘ Propriété 5 !

Soient > a,z" et > b, 2" deux séries entieres de rayons de convergence respectifs R, et Rp.
Soit R le rayon de convergence de Y (a, + b,)z". On a

R > min(R,, Ry)

et si R, # Rp, on a R = min(R,, Rp).

—[ Définition 4 }

Le produit de Cauchy des séries entieres > a,z" et > b, 2" est la série entiere > ¢, 2" ou

n
Cp = Z agbn—i
k=0

,_‘ Propriété 6 !

Soient > a,z" et > b, 2" deux séries entieres de rayons de convergence respectifs R, et Rp.
Soit R le rayon de convergence du produit de Cauchy de ces séries.
Ona R > min(R,, Rp) et

“+o00 —+00 —+00
pour |z| < min(R,, Ry) < R, (Z anz”> (Z bnz”> = (Z cnz”>
n=0 n=0 n=0

n
ou Cp = Z akbn,k = Z aibj.
k=0 (i,5)€[0,n]?, i+j=n

n
1
Exercice 6 : On pose H, = Z T Appliquer la propriété du produit de Cauchy pour transformer
k=1

“+oo
> Hyz".
n=1
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2 Régularité de la somme d’une série entiere

“+o00 “+oo
Nous abordons ici I’étude des fonctions x —> Z anx" de la variable réelle, et z — Z anz" de la variable

complexe. Nous avons déja parlé du domaine de définition en page 3.

+00 n
Exercice 7 : Donner le domaine de définition réel de la fonction z — E —_

n=1 n

2.1 continuité

,_‘ Propriété 7 !

Une série entiére converge normalement, donc uniformément, sur tout disque fermé de centre 0
contenu dans le disque ouvert de convergence.

On ne peut pas dire plus : on ne peut pas affirmer qu’une série entiére converge normalement sur le disque
ouvert de convergence.

—[ Corollaire 2 }

La somme d’une série entiére est continue sur son disque ouvert de convergence.

JrOO n . +OO n .
Par exemple, f: 2+ > “- est continue sur et exp:z— > Z; est continue sur
n=1 n=0

Exercice 8 : Le chapitre Séries de fonctions n’est pas a jeter a la poubelle... Que dire de la continuité de
n

+oo$
P T = — 7
from 2

Jusqu’a la fin de la section, on s’intéresse a des séries entiéres de la variable réelle.

L’intervalle ouvert de convergence de la série entiére est | — R, R[. La propriété précédente nous dit que
+oo

f x> a,a™ est continue sur | — R, R[. Par convergence normale du chapitre Séries de fonctions, on peut
n=0

parfois obtenir la convergence normale sur [—R, R] et la continuité sur [—R, R].

Par exemple, si la série > a, R™ converge absolument, les inégalités

Vr € [-R,R], |anz"| < lan|R" puis  sup [a,2"| < |a, R"|
z€[—R,R]
assurent la convergence normale sur [—R, R]. Dans ce cas, la somme est continue sur [—R, R].
Le théoréme suivant s’intéresse au cas de semi-convergence (Y a, R"™ converge) et montre la continuité en R. Il est

admis, conformément au programme.

——{ Théoréme 1 - théoréme d’Abel radial - admis |

Soit > anx™ une série entiere de la variable réelle, de rayon de convergence R. On suppose que
> an, R™ converge. Alors

+o0 +o0o

E anx” —— E anR"
r— R~

n=0 n=0
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+oo +oo
De méme, si Y a,(—R)" converge, on admet que Y. apz" —R> > an(—R)"™. On en déduit que la
n=0 T—— n=0
somme d’une série entiere de la variable réelle est en réalité continue sur 'intervalle de convergence en-
tier, pas seulement 'intervalle ouvert de convergence.

Le fait que la somme d’une série entiere > a,x™ de rayon de convergence R ait

A une limite en R n’implique pas que > a, R"™ converge. Par exemple, la série entiere

n N _ 1 1

> (—=1)"z™ a pour rayon de convergence R = 1 et pour somme 7z De plus, 17

admet bien une limite en 1. Mais pourtant Y (—1)" diverge grossiérement.

2.2 dérivation terme a terme, intégration
—{ Théoreme 2 |

“+oo
nction somme d’une série entier vari ré ‘T anT rayon nver-
La fonction somme d’une série entiere de la variable réelle, — 22" de rayon de conve
n=0

gence R est de classe C*™ sur | — R, R|.
Les dérivées d’ordre p de f s’obtiennent en dérivant terme a terme. Pour = €] — R, R],

fl(x) = Z napz" "t
() = Z n(n —1)apz™ >
pour p € N, fP(z) = Zn(n—l)...(n—p+ Dapa"™P

_f(p)(o)
=

En particulier, a,

“+oo
Exercice 9 : Utiliser ce théoréeme sur la série entiere géométrique f: z +— >, .

n=0
,_' Propriété 8 !
+o0o
Soit f : & +— > a,x™ une série entiere de la variable réelle de rayon de convergence R. On peut
n=0

intégrer terme a terme de 0 & ¢, pour t €] — R, R| :

t +o0 a "
do = n_gn
O/f(x) v ngon—l—l

\.

Exercice 10 :

1. Appliquer le théoreme d’intégration sur la série entiere > x™. Quelle formule obtient-on ?

2. Quelle formule obtient-on apres application du théoréme d’Abel radial en —17
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3 Développements en séries entieres

3.1 généralités (variable complexe)

— Définition 5 |

o Une fonction f de la variable réelle est développable en série entiére sur | — r,r[ s'il existe
une série entiere > apa™ de rayon de convergence R avec R > r telle que :

Ve el —rr, flx)= Jioanx"
n=0

o Une fonction f de la variable complexe est développable en série entiére sur D(0, ) s’il existe
une série entiere > a,z" de rayon de convergence R avec R > r telle que :

+oo
Vze D(0,r), f(z)= Z anz"
n=0

Remarque : une combinaison linéaire et un produit de fonctions développables en séries entieres sont
encore développables en séries entieres.

Exemples :

— la fonction exponentielle est développable en série entiere sur C puisque

+00 _n
zZ _
\V/Z € (C, e = Z ﬁ
n=0
— la fonction z — i est développable en série entiére sur D(0, 1) puisque

1 =
Vz € D(0,1), —— = Z 2"
n=0

1—z
— toute fonction polynomiale est développable en série entiere sur C puisque

I p(n)
PO
VzeC, P(z)= Z n‘()z” par la formule de Taylor sur les polynémes
n=0 '

Si f admet un développement en série entiere, ce développement est unique, en vertu de la propriété
suivante.

,_[ Propriété 9 — unicité du développement en série entiere ]

Soient > an,z"™ et > b,z"™ deux séries entieres de rayons de convergence strictement positifs. On
suppose que ces séries entiéres coincident sur un intervalle |0, [ non vide :

+o0o +o0
Yz €]0, 7, Z apz” = Z bpa"
n=0 n=0

Alors pour tout n € N, a, = b,.

. J

Exercice 11 : Soit f une fonction de la variable réelle développable en série entiére sur | — r,r[. Que
peut-on dire lorsque f est paire? impaire ?
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3.2 développements usuels dans le domaine réel

Désormais, nous considérons uniquement des fonctions de la variable réelle. D’aprés les paragraphes pré-

cédents,

La réciproque est fausse :

Si f est développable en série entiére sur |
en série entiere est unique, correspondant a sa série de Taylor en 0.

fz) =

& M)
100,

|
o n:

Voici la liste des développements en série entiére a connaitre par coeur.

—r,r[, f est de classe C*> sur | —r, 7] et son développement

f peut étre de classe C* sur | — r,r[ sans que f soit développable en série
entiere, et la série de Taylor de f en 0 peut converger sans que sa somme soit égale a f.

+o00 o
R =+ z€C oF — Z =
—n!
1 400
R=1 ze€ D(0,1) — 3
1—-2 n=0
R=+ ceR (z) —’io (=" o,
=700 x cos(x) = z
e (1)
R = eR i — 2n+1
+o0 x sin(x) ngo ant 1)135
R=+ eR h(z) ol o
=T x ch(z) = —
R =+c0 reR sh(z) = w 1 2t
n=0 (2n+ 1)'
+o0 (_1)7171
R=1 -fe]—l,l] ln(l—l—l‘): "
n=1 n
+00 xn
(S [_171[ —h’l(l—x): i
n=1 N
R=1 z € [-1,1] arctan(z) = +§O:O (=D" ons1
’ n=02n+1
XRaa-1)...(a—n+1)
R=1siaeR\N | z€]-1,1] (1+x)a:1+z | o
n=1 n:
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Exercice 12 : Appliquer le développement en série entiere (1 4+ 2)® pour développer en série entiére :

’ (7 |)’p +1 ou p € N. Quel résultat montré pl ve- 2
+x plus haut retrouve-t-on
1

2.

& .

1—

3.3 méthode de ’équation différentielle linéaire

Commengons par un exemple et cherchons a nouveau le développement en série entiere de sinus, mais par
une autre méthode. La fonction sinus est solution de 1’équation différentielle "/ = —y avec les conditions
initiales y(0) = 0 et 3/(0) = 1.

1

y =—y
y(0) =0 (*)
y'(0) =1

Par analyse-synthése, montrons que sin est développable en série entiere et déterminons son développe-
ment.

ANALYSE : on suppose 'existence d’une série entiére solution de (x) et on la détermine.

+00
Soit Y anz™ une série entiére de rayon de convergence R > 0 solution de (). On pose S(z) = > apz™.
n=0

+oo
Par théoréme de dérivation terme & terme, S”(z) = > n(n — 1)a,z™ 2. On reporte dans (*). Pour
n=2
x €] —R,R],
400 400
Z n(n —1apz™ 2 + Z apz” = 0
n=2 n=0
+o0 +oo
Z(] +1)(j +2)ajo + Z apx” = 0
=0 n=0
+o0 +oo
Sk +2)(k+ Dagso + aglz® = 0= 02"
k=0 k=0

Deux séries entiéres qui coincident sur un intervalle non vide |0, r[ ont les mémes coefficients. Donc

- W
VREN, ek = )

Or ap = S(0) = 0, donc pour tout k pair, a = 0 (récurrence immédiate). Et a; = S’(0) = 1.

1 VLA (-1)*
as — — as — (§] al recurrence, a =
5T T3x2 T 432 P P BAL = op 1)
+00 _q)k+1
S(@) = 2 ((karl)! 2L
k=0
SYNTHESE

. 1z - .\ —1)k+1
Considérons la série entiere ((lel), 22k Commencons par chercher son rayon de convergence.
—1)k+1 2k+1 | Uk+1 |22 N s ;.
Pour uj, = S | = 0. Par la régle de d’Alembert (sur les séries nu-
k= (@k+1) s = FFNETD) sro0 g (

mériques en général, pas celle sur les séries entieres), Y wug converge absolument. R = +oo. On note
¥ (DM o

X = .
frae 3 G

Les calculs de I'analyse faite plus haut peuvent étre repris sur R et permettent d’affirmer que la fonction
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+oo (_1)k+1

somme f est solution de I’équation différentielle y” = —y. De plus, f(0) = 0. Et f'(z) = kgl el

done f/(0) =1
Par unicité des solutions au probléeme de Cauchy (%), f = sin.
On a donc redémontré ici :
X (_1)71 :L_2n+1

Vr e R, sin(z) = Z
= (2n+1)!

$2k+1

,_[ Méthode — déterminer un développement en série entiere avec une équation différentielle ]—

1. On détermine une équation différentielle satisfaite par notre fonction f, avec conditions
initiales.

2. Par analyse-synthese, on détermine une série entiere S solution du probléme. On est amené
dans notre travail & une relation de récurrence entre les coefficients.

3. On utilise un résultat d’unicité des solutions a un probléme de Cauchy. On obtient f = 5.

Exercice 13 : Soit f(z) = a%). f est définie sur | — 1, 1].

1. Déterminer ’équation différentielle d’ordre 1 satisfaite par f.

2. En déduire que f est développable en série entiere sur | — 1, 1[ et déterminer son développement en
série entiere.
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4 Annexe : quelques éléments de démonstrations

Lemme d’Abel (lemme 1)

Si zp =0, il n’y a rien & montrer. Soit zp # 0 tel que (anzy) est bornée. Soit z tel que |z| < |zo].

z ™ z
an"] = lanzil| 2| = 0021

La série géométrique |5|" est de raison r €] — 1,1[ donc converge, et [=|" > 0. Par le théoréme de comparaison des

séries numériques a termes positifs, Y |anz"| converge.

Propriété 1 et corollaire 1

Si |z| > R, alors la suite (anz™) n’est pas bornée, donc ne tend pas vers 0, donc la série ) a,2" diverge grossiérement.

Si |z| < R, alors par définition du sup, |z| n’est pas un majorant de {t € R", (ant") est bornée} et il existe r tel que
|z] < r < R, pour lequel la suite (anr™) est bornée. Par le lemme d’Abel, la série Y " |an2"| converge.

Corollaire immédiat en utilisant les contraposées de la propriété 1 :

E |anz"| diverge = E anz" ne converge pas absolument = |z| > R

E |anz"| converge = E a»z" ne diverge pas grossiérement = |z| < R

Reégle de d’Alembert pour les séries entiéres, propriété 2
On suppose que |a2¢| — Loul € R U{+oo}.
" n—+oo
— Si £ € R, montrons que R = %.
lanan =™ _ g

lanz™]

On a lim
n—-+oo

Si |z| > %, par la régle de d’Alembert des séries, > anz™ diverge. Donc R < %
Si |z| < 3, par la régle de d’Alembert des séries, > anz™ converge, et donc R > %.

n+1
— Si ¢ =0, pour tout z € C, on a lim % =0, et par la régle de d’Alembert des séries, Y anz" converge.
n—4o00 "
Donc R = +o0.
n+1
— Sif = +o0, pour tout z € C*, ona lim % = 400, et toujours par la régle de d’Alembert des séries, . an2z"
n—-+oo n

diverge. R = 0.
Propriété 3

o Si|an| < |bn| & partir d’un certain rang, alors pour t € RT, |a,t™| < |but™].
Donc si la suite (b,t™) est bornée, la suite (a,t™) l'est aussi.

{t € RY, (but™) est bornée} C {t € RT, (ant") est bornée}

Ry < R,.

e Sia, = O(b,) ou a, = o(by), alors on a |a,| < M|by,| & partir d’un certain rang, et on peut rédiger comme au premier
point. Ry > Ry.

o Siap ~ by, alors a, = O(bn) et b = O(an).

Propriété 4

On pose b, = nan,.

o |an| < |bn| donc Ry < Raq.

e Soit t < R (si Rq =0, on a Ry = R, = 0 et c’est déja fini). On veut montrer que (na,t™) est bornée.
11 existe r dans |¢, Ra|.

t

[bnt™| = [nant™| = anr™ x n(=)"
N——" T

bornée S~

tend vers 0 par croissance comparée
Donc (bnt™) est bornée et ¢t < Rp.
Ra < Rb

Propriété 5

Remarque : rédiger sur les convergences de séries pourrait leur permettre de réviser.

e Soit ¢ < min(R,, Ry). Les suites (ant™) et (bnt™) sont bornées, donc = (ant™ + bnt™) = ((an + by )t™) est aussi bornée.
Donc ¢t < R. On fait tendre ¢ vers min(R,, Ry) et on trouve min(R,, Ry) < R.
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e On suppose que R, # Ry, par exemple R, < Rp. Par le premier point, R, < R.
Soit t €]Ra, Ry[. La suite (ant™) n’est pas bornée et la suite (b,t") l'est. Par somme, la suite ((an + bn)t™) n’est pas bornée.
Donc t > R. On fait ensuite tendre t vers R,.

Propriété 6 sur le produit de Cauchy

Soit z € C tel que |z| < min(Ra, Ry). Les deux séries numériques »  anz™ et Y b, 2" convergent absolument. On a
n
2" = Z(akzk)(bn,kznfk)
k=0

Par propriété de Cauchy du chapitre Séries numériques, »  cnz™ converge et

—+oo +oo oo
n n n
E An 2 E bnz = E CnZ
n=0 n=0 n=0

et donc |z| < R. On fait tendre z vers min(Rq, Rp).

Propriété 7 et corollaire 2

Soit > anz™ une série entiére de rayon de convergence R > 0 et D¢(0,7) = Bf(0,7), ou 0 < r < R, un disque fermé inclus
dans le disque ouvert de convergence.

On note fn(z) = anz™. Pour z € Dy(0,7), on a |anz"| < |ax|r™ puis || falloo, ps(0,r) < |an|r™.

Comme r < R, ) |anr"| converge. Par théoréme de comparaison, || fnlle, ;(0,r) converge. La série de fonctions ) fn
converge normalement sur D¢ (0, 7).

On donne comme exemple »_ 2", pour illustrer qu'on n’a pas forcément convergence normale sur tout le disque ouvert

de convergence ( sup [2"|=1et sup |z"|=1,et ) 1 diverge).
2€D(0,1) z€]—1,1]

n

Pour tout n € N, f, : z — anz" est continue sur Ds(0,7) et Y fn converge normalement sur Dy(0,7). Donc la somme

+oo

f = > fu est continue sur D;(0,r). Elle est donc continue en tout point de Df(0,7), et ce quel que soit 7 < R, donc elle
n=0

est continue en tout point du disque ouvert de convergence.

Théoréme 2
On a déja montré, et ce résultat était valable aussi pour des séries entiéres de la variable complexe, qu’une série entiere et
sa série entiere dérivée avaient méme rayon de convergence.
Remarque : On considére une série entiére de la variable réelle parce que la notion de dérivabilité avec une variable complexe
n’est pas au programme.

—+o0
Soit donc f : z+ Y anz” de rayon de convergence R.

n=0
e« Nous mettons en place le théoréme de dérivation des séries de fonctions. Soit f, : * — a,x™. On vérifie les trois
points :
— fu est de classe C* sur | — R, R],
— Y fn converge simplement sur | — R, R],

— > f/, est une série entiére de rayon de convergence R (vu en propriété 4). Donc Y f, converge uniformément (car
normalement) sur tout segment [—r,r] de | — R, R[ par la propriété 7.

Par le théoréme de dérivation des séries de fonctions, f est de classe C! sur ] = R, R[, et f'(z) est obtenue par dérivation
terme a terme :

400
Fl@)=> fil)
n=0
o Par récurrence immédiate, on a le résultat pour f.
Propriété 8
Nous mettons en place le théoréme d’intégration des séries de fonctions.

Soit fn : &+ anz”. Les fonctions f, sont continues sur | — R, R[ et > fn converge uniformément (car normalement) sur
tout segment [—t,t] de | — R, R[ par la propriété 7. Par le théoréme d’intégration terme & terme sur un segment, on a

t too
/f(z) dz = Z / anz" dz
0 n=07g

puis le résultat.
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Propriété 9
On note R, et R, les rayons de convergence de Y anz" et > bpz". Onar< mln(Ra, Ry).

Pour tout ¢ €] — Ra, Ra[, on note f(t) Z ant™ et pour t €] — Ry, Ry], Z bnt™.
n=0
Par hypothese, f(t) = g(t) pour t €]0, r[. Par continuité de la somme de séries entleres sur I'intervalle ouvert de convergence,

f et g sont continues en 0 :

£(0) = lim £() = lim g(¢) = g(0)

t—0 t—0
f et g coincident sur [0, 7.
Par propriété des séries entiéres, la fonction somme f est de classe C* sur | — Rq, Ra|, et g est de classe C*™ sur | — Ry, Rp|.
Pour tout t € [0,7[, pour tout n € N, on a ™ (t) = g™ ().
An = % = % = b, par le théoréme 2.
Etablissement des développements en série entiére usuels
« exponentielle complexe
On montre facilement que pour z € C, Z %+ converge.
On rappelle I’énoncé de I'inégalité de Taylor Lagrange. Soit f : I — C de classe C™*! sur un intervalle I de R. Alors, pour
a et b dans I, en travaillant dans [0, +oc],

— f*(a) k (n+1) b —a|**!
fb) — ol (b—a)*| <|If ”OO’IW

k=0

On prend I =[0,1], a =0, b =1, z fixé dans C et f(t) = e'*. f est de classe C*° sur I et f("TV(t) = 2" 1!,

Pour tout ¢ € I, on a |fFY (¢)] < |2]"FHe?| < |2|" 1M, ot M. = sup |e**|. M. € R par le théoréme des bornes atteintes
t€[0,1]

(appliqué & la fonction ¢ — |e**| continue sur le segment [0, 1]).
Par I'inégalité de Taylor-Lagrange :

n+1
Zkl < n+1)|| M-

Par croissance comparée, hm |"Jr M. = 0. On termine avec le théoréeme d’encadrement.

(n+1>' |2

¢ série géométrique complexe
Pour Y 2", on détermine le rayon de convergence avec la régle de d’Alembert : R = 1. Pour |z| < 1,

|Z|n+1

1 —~
172,—2,2 <|1fz|
k=0

et on termine avec le théoréme d’encadrement.

« fonctions circulaires

On part de
+oo 1k
iz _ 1Lk
Ve eR, e = Z k!I
k=0
et on identifie la partie réelle et la partie imaginaire.
o fonctions hyperboliques
“+ oo
et =5 %xk
On part de ]j_:o et L1+ Lo et L1 — Lo donnent les résultats.
e " Z
¢ logarithme In(1 + x)
“+ oo
On part de ) (—z)" de rayon de convergence R =1, avec »  (—z)" = 1_%95
n=0

Par le théoréme d’intégration terme & terme, pour tout ¢t €] — 1, 1],

t 1 “+oo t +oo( l)n
_ " . o — n+1
/1+xdm_§o/( z)"dx soit In(l+t)= EoinJrlt
0 "=Yo n=

too n—1
En conclusion, pour tout z €] — 1,1[, In(1 +z) = >_ %x"
n=1
Regardons la convergence en R = 1. La suite (%) est décroissante de limite nulle. Par le théoréeme des séries alternées,
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n—1
> % converge. On peut alors appliquer le théoréme d’Abel radial :

="' . (=H"*
Z n IE z—1 Z n
n=1 n=1
=In(1+x)
too =1
Par unicité de la limite, ) % = In(2).
n=1
e Arctan
Pour z €] — 1,1], 22 €]0,1[ et on a
1 1 +oo “+oo
2\n n,2n
= = — = —1
e ST Z_} ) Z_;( )

Par le théoréme d’intégration terme a terme,

t

1 +oo t +o0 ( 1)n
/1-1-7232 dz = ZO /(—1)";52" dz soit arctan(t) = ZO mtzn-u
0 =Yoo n=

<2:1142: converge. On peut alors appliquer le théoréme d’Abel radial :
+o0 n +o0 n
3 =D" 3 (1)
2n+1 z—1 2n+1
n=0 n=0

=arctan(z)

Par ailleurs, par le théoréme des séries alternées, >

too n
Par unicité de la limite, »_ gll_gl =arctan(1) = 7.
n=0

¢ série de type bindme

On consideére ) Wfﬁn
nz1
Sia €N, les termes “@=1-(e=nt) ont tous nuls & partic du rang n = a + 1 et la série n’est qu'une somme finie, qu’on

n:
reconnait comme étant la formule du binome :

pour a €N, Vz € R, (1+z)“ :Z (Z)xk

k=0
Si a € N, on peut appliquer la régle de d’Alembert : |%\ = \Zrﬂ — 1 et R=1. Notons S la fonction somme :
+oo
_ ala—1)...(a—=n+1) ,
Vol - 1,1 S(@)=_1_+» ] x
ag n=1

Par ailleurs, posons f :z — (1 +x)%; f est définie sur | — 1, 1] et satisfait :

Vo €] - 1,1, (1+az)f'(z) = af(z) et f(0)=1 (*)

. Par

. {(1+ﬂc)y’ = ay

Donc f est solution de I’équation différentielle linéaire du premier ordre avec condition initiale : 0) )
Yy

unicité au probléeme de Cauchy, f est caractérisée par (x). Si on montre que S est solution de (x), alors on aura bien f = S.

On a S(0) = 1. Par le théoréme de dérivation terme & terme,

+oo
Ve el 1,1, S'(z)= Z aa—1). .7.15(1 —nt 1)nx"71
n=1 ’
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—+o0
ala—1)...(a—n+1) . ala—1)...(a—n+1) ,
ol nr +Z ol nx

+
8

(1+2)8'(x) =

n=1

ala—1)...(a—j) ; ala—1)...(a=n+1)

INgriNg
g

= o T+ " nx
7=0 J: n=1 ’
“+oo
. ala—1)...(a—k) ala—=1)...(a—k+1)k\ 4
- “Z< Kl * ! v
k=1

“+oo
_ a+za(af1)..l.d(afk+1)(a_k+k)xk
k=1 ’

+oo
_ a—o—az a(a—l)..].f'(a—/c—i—l)xk
k=1 ’

= aS(z)
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