
Séries entières

Les coefficients des séries entières considérées sont réels ou complexes.

Les attentes

1. Savoir présenter le schéma dans C donnant les situations :
— en termes de série convergente,
— en termes de suite bornée.

Et savoir aussi définir rigoureusement le rayon R de convergence
(sup . . . ).

2. Règle de d’Alembert pour les séries entières. Savoir que pour des
séries lacunaires, il faut revenir à la règle de d’Alembert des séries
numériques.

3. Théorèmes d’équivalence, négligeabilité, domination à partir des co-
efficients.

4. Série entière de référence de type ∑nazn.
5. Une série entière et sa série dérivée ont même rayon de convergence.
6. Propriété pour la somme. Propriété du produit de Cauchy.
7. Où y a-t-il convergence normale de∑ anzn ? Continuité sur D(0, R).
8. La somme d’une série entière est de classe C∞ sur l’intervalle ouvert

de convergence et ses dérivées s’obtiennent par dérivation terme à
terme.

9. Expression des coefficients d’une série entière de rayon de conver-
gence strictement positif à l’aide des dérivées en 0 de sa somme.

Corollaire : si les fonctions x 7→
+∞∑
n=0

anxn et x 7→
+∞∑
n=0

bnxn coïncident

sur un intervalle ]0, α[ non vide, alors, pour tout n ∈ N, an = bn.
10. Développements en série entière usuels : ez, 1

1−z , − ln(1−x), (1+x)α,
cos, sin, ch, sh et domaines de validité.

11. Savoir développer une fonction en série entière à l’aide d’une
équation différentielle linéaire.

1. Lemme d’Abel.
2. Théorème d’Abel radial.
3. Savoir retrouver efficacement le développement en série entière de

arctan.

On souhaite étudier les fonctions de la forme

x 7→
+∞∑
n=0

anxn ou z 7→
+∞∑
n=0

anzn

où les coefficients an sont réels ou complexes, la variable étant elle aussi réelle ou complexe.
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1 Généralités

Soit q ∈] − 1, 1[. On a lim
n→+∞

nqn = 0 et plus généralement, pour tout réel α,

lim
n→+∞

nαqn = 0

1.1 rayon de convergence

Définition 1
On appelle série entière toute série de fonctions de la variable complexe ou réelle de la forme∑

anzn où (an) ∈ CN.
Le domaine de convergence est l’ensemble de définition, dans R ou dans C, de la fonction
z 7→

+∞∑
n=0

anzn.

Lemme 1 – lemme d’Abel

Soient (an) ∈ CN et z0 ∈ C. Si la suite (anzn
0 ) est bornée, alors pour tout z ∈ C tel que |z| < |z0|,

la série ∑ anzn converge absolument.

Définition 2

On appelle rayon de convergence de la série entière ∑ anzn la borne supérieure :

R = sup{ t ∈ R+ | la suite (antn) est bornée}

On a R ∈ R+ ∪ {+∞}.

En vertu du lemme d’Abel, si la suite (antn) est bornée, alors pour tout z ∈ C tel que |z| ⩽ t, la suite
(anzn) est encore bornée. On a donc la configuration suivante :

Exercice 1 :

1. Donner le rayon de convergence de
∑

zn,
∑ zn

n
, de

∑
n!zn.

2. Que dire du rayon de convergence de ∑ anzn lorsque la suite (an) est bornée ?
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Propriété 1

Soit ∑ anzn une série entière de rayon de convergence R. Soit z ∈ C.
• Si |z| < R, alors ∑ anzn converge absolument.
• Si |z| > R, alors ∑ anzn diverge grossièrement.
• Si |z| = R, on ne peut rien dire.

Corollaire 1
Avec les mêmes notations,

• si ∑ |anzn| converge, alors R ⩾ |z|,
• si ∑ |anzn| diverge, alors R ⩽ |z|.

R = sup{ t ∈ R+,
∑

antn converge absolument}

Exemple : notons R le rayon de convergence de ∑ sin(n)zn.

(sin(n)) est bornée donc

∑
sin(n) diverge grossièrement donc

donc

Dans R
Dans C

Dans le cas réel, le domaine de convergence est un intervalle du type ] − R, R[, ] − R, R] , [−R, R[ ou
[−R, R].
Dans le cas complexe, le domaine de convergence est constitué du disque ouvert de convergence et de

points situés sur le cercle d’incertitude.

Définition 3

Soit ∑ anzn une série entière de rayon de convergence R.
• Si K = R, ] − R, R[ est appelé intervalle ouvert de convergence.
• Si K = C, D(0, R) = {z ∈ C | |z| < R} est appelé disque ouvert de convergence.
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1.2 détermination pratique du rayon de convergence

Nous présentons quelques pistes :
▶ utilisation de séries ∑ anzn

0 connues, pour encadrer R

▶ utilisation de la règle de d’Alembert pour les séries entières
▶ utilisation de comparaisons (an ∼ bn, an = O(bn))
▶ utilisation de séries dérivées.

Méthode – utilisation de séries ∑ anzn
0 connues

Si on connaît la nature de ∑ anzn
0 , on peut en déduire des informations sur le rayon de convergence

R de la série entière ∑ anzn, en réfléchissant bien sur le schéma page 3.
— Si ∑ anzn

0 converge, alors |z0| ⩽ R.
— Si ∑ anzn

0 diverge, alors |z0| ⩾ R.
— Si ∑ anzn

0 est semi-convergente, alors |z0| = R.

Exercice 2 : On a déjà mis en œuvre cette idée plus haut pour
∑

sin(n)zn. Traiter les exemples de∑ zn

n
et
∑ zn

n2 .

Propriété 2 – règle de d’Alembert adaptée aux séries entières

On suppose que les coefficients an sont non nuls à partir d’un certain rang et que
∣∣∣an+1

an

∣∣∣ −→
n→+∞

ℓ

où ℓ ∈ R+ ∪ {+∞}.
— Si ℓ ∈ R+∗, R = 1

ℓ .
— Si ℓ = 0, R = +∞.
— Si ℓ = +∞, alors R = 0.

Exercice 3 : Donner le rayon de convergence des séries entières suivantes :
∑

(n − 1)2nzn
∑ 1

(2n)!z
n

∑
arctan(n)zn

∑
arctan( 1

n
)zn

P♡ Exercice 4 : Déterminer le rayon de convergence de ∑nαzn pour α réel fixé. Vous pourrez utiliser
ce résultat comme du cours.

Exercice 5 : Séries lacunaires. La série de fonctions ∑ anz2n peut se comprendre comme une série entière.
En effet, ∑ anz2n = ∑

bnzn en posant b2p = ap et b2p+1 = 0. Le rayon de convergence d’une telle série
peut souvent se déterminer par la règle de d’Alembert des séries numériques (pas des séries entières
puisque les an s’annulent une infinité de fois).

1. Déterminer le rayon de convergence de la série entière lacunaire ∑(2n
n

)
z3n.

2. Déterminer le rayon de convergence de la série entière lacunaire ∑ 1
2n zn2 .
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Propriété 3 – comparaison de séries entières

Soient ∑ anzn et ∑ bnzn deux séries entières de rayons de convergence respectifs Ra et Rb.
• Si |an| ⩽ |bn| à partir d’un certain rang, alors Ra ⩾ Rb.
• Si an = O(bn) ou an = o(bn), alors Ra ⩾ Rb.
• Si an ∼ bn, alors Ra = Rb.

Propriété 4 – séries entières dérivées

Les séries entières ∑ anzn et ∑nanzn ont même rayon de convergence.

Par récurrence, pour tout k ∈ Z, les séries entières ∑ anzn et ∑nkanzn ont même rayon de convergence.

1.3 opérations algébriques sur les séries entières

Propriété 5

Soient ∑ anzn et ∑ bnzn deux séries entières de rayons de convergence respectifs Ra et Rb.
Soit R le rayon de convergence de ∑(an + bn)zn. On a

R ⩾ min(Ra, Rb)

et si Ra ̸= Rb, on a R = min(Ra, Rb).

Définition 4

Le produit de Cauchy des séries entières ∑ anzn et ∑ bnzn est la série entière ∑ cnzn où

cn =
n∑

k=0
akbn−k

Propriété 6

Soient ∑ anzn et ∑ bnzn deux séries entières de rayons de convergence respectifs Ra et Rb.
Soit R le rayon de convergence du produit de Cauchy de ces séries.
On a R ⩾ min(Ra, Rb) et

pour |z| < min(Ra, Rb) ⩽ R,

(+∞∑
n=0

anzn

)(+∞∑
n=0

bnzn

)
=
(+∞∑

n=0
cnzn

)

où cn =
n∑

k=0
akbn−k = ∑

(i,j)∈J0,nK2, i+j=n

aibj .

Exercice 6 : On pose Hn =
n∑

k=1

1
k

. Appliquer la propriété du produit de Cauchy pour transformer

+∞∑
n=1

Hnxn.
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2 Régularité de la somme d’une série entière

Nous abordons ici l’étude des fonctions x 7→
+∞∑
n=0

anxn de la variable réelle, et z 7→
+∞∑
n=0

anzn de la variable

complexe. Nous avons déjà parlé du domaine de définition en page 3.

Exercice 7 : Donner le domaine de définition réel de la fonction x 7→
+∞∑
n=1

xn

n
.

2.1 continuité
Propriété 7

Une série entière converge normalement, donc uniformément, sur tout disque fermé de centre 0
contenu dans le disque ouvert de convergence.

On ne peut pas dire plus : on ne peut pas affirmer qu’une série entière converge normalement sur le disque
ouvert de convergence.

Corollaire 2
La somme d’une série entière est continue sur son disque ouvert de convergence.

Par exemple, f : x 7→
+∞∑
n=1

xn

n est continue sur et exp : z 7→
+∞∑
n=0

zn

n! est continue sur

Exercice 8 : Le chapitre Séries de fonctions n’est pas à jeter à la poubelle... Que dire de la continuité de

f : x 7→
+∞∑
n=1

xn

n2 ?

Jusqu’à la fin de la section, on s’intéresse à des séries entières de la variable réelle.

L’intervalle ouvert de convergence de la série entière est ] − R, R[. La propriété précédente nous dit que

f : x 7→
+∞∑
n=0

anxn est continue sur ] − R, R[. Par convergence normale du chapitre Séries de fonctions, on peut

parfois obtenir la convergence normale sur [−R, R] et la continuité sur [−R, R].
Par exemple, si la série

∑
anRn converge absolument, les inégalités

∀x ∈ [−R, R], |anxn| ⩽ |an|Rn puis sup
x∈[−R,R]

|anxn| ⩽ |anRn|

assurent la convergence normale sur [−R, R]. Dans ce cas, la somme est continue sur [−R, R].
Le théorème suivant s’intéresse au cas de semi-convergence (

∑
anRn converge) et montre la continuité en R. Il est

admis, conformément au programme.

Théorème 1 – théorème d’Abel radial - admis

Soit ∑ anxn une série entière de la variable réelle, de rayon de convergence R. On suppose que∑
anRn converge. Alors

+∞∑
n=0

anxn −−−−→
x→R−

+∞∑
n=0

anRn
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De même, si ∑ an(−R)n converge, on admet que
+∞∑
n=0

anxn −−−−→
x→−R

+∞∑
n=0

an(−R)n. On en déduit que la
somme d’une série entière de la variable réelle est en réalité continue sur l’intervalle de convergence en-
tier, pas seulement l’intervalle ouvert de convergence.

△!
Le fait que la somme d’une série entière ∑ anxn de rayon de convergence R ait
une limite en R n’implique pas que ∑ anRn converge. Par exemple, la série entière∑(−1)nxn a pour rayon de convergence R = 1 et pour somme 1

1+x . De plus, 1
1+x

admet bien une limite en 1. Mais pourtant ∑(−1)n diverge grossièrement.

2.2 dérivation terme à terme, intégration

Théorème 2

La fonction somme d’une série entière de la variable réelle, f : x 7→
+∞∑
n=0

anxn de rayon de conver-
gence R est de classe C∞ sur ] − R, R[.
Les dérivées d’ordre p de f s’obtiennent en dérivant terme à terme. Pour x ∈] − R, R[,

f ′(x) =
+∞∑
n=1

nanxn−1

f ′′(x) =
+∞∑
n=2

n(n − 1)anxn−2

pour p ∈ N, f (p)(x) =
+∞∑
n=p

n(n − 1) . . . (n − p + 1)anxn−p

En particulier, ap = f (p)(0)
p! .

Exercice 9 : Utiliser ce théorème sur la série entière géométrique f : x 7→
+∞∑
n=0

xn.

Propriété 8

Soit f : x 7→
+∞∑
n=0

anxn une série entière de la variable réelle de rayon de convergence R. On peut
intégrer terme à terme de 0 à t, pour t ∈] − R, R[ :

t∫
0

f(x) dx =
+∞∑
n=0

an

n + 1 tn+1

Exercice 10 :
1. Appliquer le théorème d’intégration sur la série entière ∑xn. Quelle formule obtient-on ?
2. Quelle formule obtient-on après application du théorème d’Abel radial en −1 ?
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3 Développements en séries entières

3.1 généralités (variable complexe)

Définition 5

• Une fonction f de la variable réelle est développable en série entière sur ] − r, r[ s’il existe
une série entière ∑ anxn de rayon de convergence R avec R ⩾ r telle que :

∀x ∈] − r, r[, f(x) =
+∞∑
n=0

anxn

• Une fonction f de la variable complexe est développable en série entière sur D(0, r) s’il existe
une série entière ∑ anzn de rayon de convergence R avec R ⩾ r telle que :

∀z ∈ D(0, r), f(z) =
+∞∑
n=0

anzn

Remarque : une combinaison linéaire et un produit de fonctions développables en séries entières sont
encore développables en séries entières.

Exemples :
— la fonction exponentielle est développable en série entière sur C puisque

∀z ∈ C, ez =
+∞∑
n=0

zn

n!

— la fonction z 7→ 1
1−z est développable en série entière sur D(0, 1) puisque

∀z ∈ D(0, 1), 1
1 − z

=
+∞∑
n=0

zn

— toute fonction polynomiale est développable en série entière sur C puisque

∀z ∈ C, P (z) =
+∞∑
n=0

P (n)(0)
n! zn par la formule de Taylor sur les polynômes

Si f admet un développement en série entière, ce développement est unique, en vertu de la propriété
suivante.

Propriété 9 – unicité du développement en série entière

Soient ∑ anzn et ∑ bnzn deux séries entières de rayons de convergence strictement positifs. On
suppose que ces séries entières coïncident sur un intervalle ]0, r[ non vide :

∀x ∈]0, r[,
+∞∑
n=0

anxn =
+∞∑
n=0

bnxn

Alors pour tout n ∈ N, an = bn.

Exercice 11 : Soit f une fonction de la variable réelle développable en série entière sur ] − r, r[. Que
peut-on dire lorsque f est paire ? impaire ?

MP 2025 – 2026 8 D. Leroy, lycée Pissarro



3.2 développements usuels dans le domaine réel

Désormais, nous considérons uniquement des fonctions de la variable réelle. D’après les paragraphes pré-
cédents,

Si f est développable en série entière sur ] − r, r[, f est de classe C∞ sur ] − r, r[ et son développement
en série entière est unique, correspondant à sa série de Taylor en 0.

f(x) =
+∞∑
n=0

f (n)(0)
n! xn

La réciproque est fausse : f peut être de classe C∞ sur ] − r, r[ sans que f soit développable en série
entière, et la série de Taylor de f en 0 peut converger sans que sa somme soit égale à f .

Voici la liste des développements en série entière à connaître par cœur.

R = +∞ z ∈ C ez =
+∞∑
n=0

zn

n!

R = 1 z ∈ D(0, 1) 1
1 − z

=
+∞∑
n=0

zn

R = +∞ x ∈ R cos(x) =
+∞∑
n=0

(−1)n

(2n)! x2n

R = +∞ x ∈ R sin(x) =
+∞∑
n=0

(−1)n

(2n + 1)!x
2n+1

R = +∞ x ∈ R ch(x) =
+∞∑
n=0

1
(2n)!x

2n

R = +∞ x ∈ R sh(x) =
+∞∑
n=0

1
(2n + 1)!x

2n+1

R = 1 x ∈] − 1, 1] ln(1 + x) =
+∞∑
n=1

(−1)n−1

n
xn

x ∈ [−1, 1[ − ln(1 − x) =
+∞∑
n=1

xn

n

R = 1 x ∈ [−1, 1] arctan(x) =
+∞∑
n=0

(−1)n

2n + 1x2n+1

R = 1 si a ∈ R \ N x ∈] − 1, 1[ (1 + x)a = 1 +
+∞∑
n=1

a(a − 1) . . . (a − n + 1)
n! xn
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Exercice 12 : Appliquer le développement en série entière (1 + x)α pour développer en série entière :

1. 1
(1 + x)p+1 où p ∈ N. Quel résultat montré plus haut retrouve-t-on ?

2. 1√
1 − x

.

3.3 méthode de l’équation différentielle linéaire

Commençons par un exemple et cherchons à nouveau le développement en série entière de sinus, mais par
une autre méthode. La fonction sinus est solution de l’équation différentielle y′′ = −y avec les conditions
initiales y(0) = 0 et y′(0) = 1. 

y′′ = −y

y(0) = 0
y′(0) = 1

(∗)

Par analyse-synthèse, montrons que sin est développable en série entière et déterminons son développe-
ment.

Analyse : on suppose l’existence d’une série entière solution de (∗) et on la détermine.
Soit ∑ anxn une série entière de rayon de convergence R > 0 solution de (∗). On pose S(x) =

+∞∑
n=0

anxn.

Par théorème de dérivation terme à terme, S′′(x) =
+∞∑
n=2

n(n − 1)anxn−2. On reporte dans (∗). Pour
x ∈] − R, R[,

+∞∑
n=2

n(n − 1)anxn−2 +
+∞∑
n=0

anxn = 0

+∞∑
j=0

(j + 1)(j + 2)aj+2 +
+∞∑
n=0

anxn = 0

+∞∑
k=0

[(k + 2)(k + 1)ak+2 + ak]xk = 0 =
+∞∑
k=0

0xk

Deux séries entières qui coïncident sur un intervalle non vide ]0, r[ ont les mêmes coefficients. Donc

∀k ∈ N, ak+2 = − ak

(k + 2)(k + 1)

Or a0 = S(0) = 0, donc pour tout k pair, ak = 0 (récurrence immédiate). Et a1 = S′(0) = 1.

a3 = − 1
3 × 2 a5 = (−1)2

5.4.3.2 et par récurrence, a2k+1 = (−1)k

(2k + 1)!

S(x) =
+∞∑
k=0

(−1)k+1

(2k+1)! x2k+1.

Synthèse
Considérons la série entière ∑ (−1)k+1

(2k+1)! x2k+1. Commençons par chercher son rayon de convergence.
Pour uk = (−1)k+1

(2k+1)! x2k+1, |uk+1
uk

| = |x2|
(2k+3)(2k+2) −−−−→

k→+∞
0. Par la règle de d’Alembert (sur les séries nu-

mériques en général, pas celle sur les séries entières), ∑uk converge absolument. R = +∞. On note
f : x 7→

+∞∑
k=0

(−1)k+1

(2k+1)! x2k+1.

Les calculs de l’analyse faite plus haut peuvent être repris sur R et permettent d’affirmer que la fonction
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somme f est solution de l’équation différentielle y′′ = −y. De plus, f(0) = 0. Et f ′(x) =
+∞∑
k=1

(−1)k+1

(2k)! x2k+1

donc f ′(0) = 1.
Par unicité des solutions au problème de Cauchy (∗), f = sin.
On a donc redémontré ici :

∀x ∈ R, sin(x) =
+∞∑
n=0

(−1)n

(2n + 1)!x
2n+1

Méthode – déterminer un développement en série entière avec une équation différentielle

1. On détermine une équation différentielle satisfaite par notre fonction f , avec conditions
initiales.

2. Par analyse-synthèse, on détermine une série entière S solution du problème. On est amené
dans notre travail à une relation de récurrence entre les coefficients.

3. On utilise un résultat d’unicité des solutions à un problème de Cauchy. On obtient f = S.

Exercice 13 : Soit f(x) = arcsin(x)√
1−x2 . f est définie sur ] − 1, 1[.

1. Déterminer l’équation différentielle d’ordre 1 satisfaite par f .
2. En déduire que f est développable en série entière sur ] − 1, 1[ et déterminer son développement en

série entière.
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4 Annexe : quelques éléments de démonstrations
Lemme d’Abel (lemme 1)
Si z0 = 0, il n’y a rien à montrer. Soit z0 ̸= 0 tel que (anzn

0 ) est bornée. Soit z tel que |z| < |z0|.

|anzn| = |anzn
0 |
∣∣∣ z

z0

∣∣∣n = O(| z

z0
|n)

La série géométrique
∑

| z
z0

|n est de raison r ∈] − 1, 1[ donc converge, et | z
z0

|n ⩾ 0. Par le théorème de comparaison des
séries numériques à termes positifs,

∑
|anzn| converge.

Propriété 1 et corollaire 1
Si |z| > R, alors la suite (anzn) n’est pas bornée, donc ne tend pas vers 0, donc la série

∑
anzn diverge grossièrement.

Si |z| < R, alors par définition du sup, |z| n’est pas un majorant de {t ∈ R+, (antn) est bornée} et il existe r tel que
|z| < r ⩽ R, pour lequel la suite (anrn) est bornée. Par le lemme d’Abel, la série

∑
|anzn| converge.

Corollaire immédiat en utilisant les contraposées de la propriété 1 :∑
|anzn| diverge ⇒

∑
anzn ne converge pas absolument ⇒ |z| ⩾ R∑

|anzn| converge ⇒
∑

anzn ne diverge pas grossièrement ⇒ |z| ⩽ R

Règle de d’Alembert pour les séries entières, propriété 2
On suppose que

∣∣an+1
an

∣∣ −→
n→+∞

ℓ où ℓ ∈ R+ ∪ {+∞}.

— Si ℓ ∈ R+∗, montrons que R = 1
ℓ
.

On a lim
n→+∞

|an+1zn+1|
|anzn| = |z|ℓ.

Si |z| > 1
ℓ
, par la règle de d’Alembert des séries,

∑
anzn diverge. Donc R ⩽ 1

ℓ
.

Si |z| < 1
ℓ
, par la règle de d’Alembert des séries,

∑
anzn converge, et donc R ⩾ 1

ℓ
.

— Si ℓ = 0, pour tout z ∈ C, on a lim
n→+∞

|an+1zn+1|
|anzn| = 0, et par la règle de d’Alembert des séries,

∑
anzn converge.

Donc R = +∞.
— Si ℓ = +∞, pour tout z ∈ C∗, on a lim

n→+∞

|an+1zn+1|
|anzn| = +∞, et toujours par la règle de d’Alembert des séries,

∑
anzn

diverge. R = 0.

Propriété 3

• Si |an| ⩽ |bn| à partir d’un certain rang, alors pour t ∈ R+, |antn| ⩽ |bntn|.
Donc si la suite (bntn) est bornée, la suite (antn) l’est aussi.

{t ∈ R+, (bntn) est bornée} ⊂ {t ∈ R+, (antn) est bornée}

Rb ⩽ Ra.
• Si an = O(bn) ou an = o(bn), alors on a |an| ⩽ M |bn| à partir d’un certain rang, et on peut rédiger comme au premier

point. Ra ⩾ Rb.
• Si an ∼ bn, alors an = O(bn) et bn = O(an).

Propriété 4
On pose bn = nan.
• |an| ⩽ |bn| donc Rb ⩽ Ra.
• Soit t < Ra (si Ra = 0, on a Rb = Ra = 0 et c’est déjà fini). On veut montrer que (nantn) est bornée.
Il existe r dans ]t, Ra[.

|bntn| = |nantn| = anrn︸︷︷︸
bornée

× n( t

r
)n︸ ︷︷ ︸

tend vers 0 par croissance comparée

Donc (bntn) est bornée et t ⩽ Rb.
Ra ⩽ Rb

Propriété 5
Remarque : rédiger sur les convergences de séries pourrait leur permettre de réviser.
• Soit t < min(Ra, Rb). Les suites (antn) et (bntn) sont bornées, donc = (antn + bntn) = ((an + bn)tn) est aussi bornée.
Donc t < R. On fait tendre t vers min(Ra, Rb) et on trouve min(Ra, Rb) ⩽ R.
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• On suppose que Ra ̸= Rb, par exemple Ra < Rb. Par le premier point, Ra ⩽ R.
Soit t ∈]Ra, Rb[. La suite (antn) n’est pas bornée et la suite (bntn) l’est. Par somme, la suite ((an + bn)tn) n’est pas bornée.
Donc t ⩾ R. On fait ensuite tendre t vers Ra.

Propriété 6 sur le produit de Cauchy
Soit z ∈ C tel que |z| < min(Ra, Rb). Les deux séries numériques

∑
anzn et

∑
bnzn convergent absolument. On a

cnzn =
n∑

k=0

(akzk)(bn−kzn−k)

Par propriété de Cauchy du chapitre Séries numériques,
∑

cnzn converge et(
+∞∑
n=0

anzn

)(
+∞∑
n=0

bnzn

)
=

(
+∞∑
n=0

cnzn

)
et donc |z| ⩽ R. On fait tendre z vers min(Ra, Rb).

Propriété 7 et corollaire 2
Soit

∑
anzn une série entière de rayon de convergence R > 0 et Df (0, r) = Bf (0, r), où 0 ⩽ r < R, un disque fermé inclus

dans le disque ouvert de convergence.
On note fn(z) = anzn. Pour z ∈ Df (0, r), on a |anzn| ⩽ |an|rn puis ∥fn∥∞, Df (0,r) ⩽ |an|rn.
Comme r < R,

∑
|anrn| converge. Par théorème de comparaison,

∑
∥fn∥∞, Df (0,r) converge. La série de fonctions

∑
fn

converge normalement sur Df (0, r).

On donne comme exemple
∑

zn, pour illustrer qu’on n’a pas forcément convergence normale sur tout le disque ouvert
de convergence ( sup

z∈D(0,1)
|zn| = 1 et sup

x∈]−1,1[
|xn| = 1, et

∑
1 diverge).

Pour tout n ∈ N, fn : z 7→ anzn est continue sur Df (0, r) et
∑

fn converge normalement sur Df (0, r). Donc la somme

f =
+∞∑
n=0

fn est continue sur Df (0, r). Elle est donc continue en tout point de Df (0, r), et ce quel que soit r < R, donc elle

est continue en tout point du disque ouvert de convergence.

Théorème 2
On a déjà montré, et ce résultat était valable aussi pour des séries entières de la variable complexe, qu’une série entière et
sa série entière dérivée avaient même rayon de convergence.
Remarque : On considère une série entière de la variable réelle parce que la notion de dérivabilité avec une variable complexe
n’est pas au programme.

Soit donc f : x 7→
+∞∑
n=0

anxn de rayon de convergence R.

• Nous mettons en place le théorème de dérivation des séries de fonctions. Soit fn : x 7→ anxn. On vérifie les trois
points :

— fn est de classe C1 sur ] − R, R[,
—
∑

fn converge simplement sur ] − R, R[,
—
∑

f ′
n est une série entière de rayon de convergence R (vu en propriété 4). Donc

∑
f ′

n converge uniformément (car
normalement) sur tout segment [−r, r] de ] − R, R[ par la propriété 7.

Par le théorème de dérivation des séries de fonctions, f est de classe C1 sur ] − R, R[, et f ′(x) est obtenue par dérivation
terme à terme :

f ′(x) =
+∞∑
n=0

f ′
n(x)

• Par récurrence immédiate, on a le résultat pour f (p).

Propriété 8
Nous mettons en place le théorème d’intégration des séries de fonctions.
Soit fn : x 7→ anxn. Les fonctions fn sont continues sur ] − R, R[ et

∑
fn converge uniformément (car normalement) sur

tout segment [−t, t] de ] − R, R[ par la propriété 7. Par le théorème d’intégration terme à terme sur un segment, on a
t∫

0

f(x) dx =
+∞∑
n=0

t∫
0

anxn dx

puis le résultat.
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Propriété 9
On note Ra et Rb les rayons de convergence de

∑
anzn et

∑
bnzn. On a r ⩽ min(Ra, Rb).

Pour tout t ∈] − Ra, Ra[, on note f(t) =
+∞∑
n=0

antn et pour t ∈] − Rb, Rb[, g(t) =
+∞∑
n=0

bntn.

Par hypothèse, f(t) = g(t) pour t ∈]0, r[. Par continuité de la somme de séries entières sur l’intervalle ouvert de convergence,
f et g sont continues en 0 :

f(0) = lim
t→0

f(t) = lim
t→0

g(t) = g(0)

f et g coïncident sur [0, r[.
Par propriété des séries entières, la fonction somme f est de classe C∞ sur ] − Ra, Ra[, et g est de classe C∞ sur ] − Rb, Rb[.
Pour tout t ∈ [0, r[, pour tout n ∈ N, on a f (n)(t) = g(n)(t).
an = f(n)(0)

n! = g(n)(0)
n! = bn par le théorème 2.

Établissement des développements en série entière usuels
• exponentielle complexe
On montre facilement que pour z ∈ C,

∑
zn

n! converge.
On rappelle l’énoncé de l’inégalité de Taylor-Lagrange. Soit f : I → C de classe Cn+1 sur un intervalle I de R. Alors, pour
a et b dans I, en travaillant dans [0, +∞],∣∣∣∣∣f(b) −

n∑
k=0

f (k)(a)
k! (b − a)k

∣∣∣∣∣ ⩽ ∥f (n+1)∥∞, I
|b − a|n+1

(n + 1)!

On prend I = [0, 1], a = 0, b = 1, z fixé dans C et f(t) = etz. f est de classe C∞ sur I et f (n+1)(t) = zn+1etz.
Pour tout t ∈ I, on a |f (n+1)(t)| ⩽ |z|n+1|etz| ⩽ |z|n+1Mz où Mz = sup

t∈[0,1]
|etz|. Mz ∈ R par le théorème des bornes atteintes

(appliqué à la fonction t 7→ |etz| continue sur le segment [0, 1]).
Par l’inégalité de Taylor-Lagrange : ∣∣∣∣∣f(z) −

n∑
k=0

zk

k!

∣∣∣∣∣ ⩽ 1
(n + 1)! |z|n+1Mz

Par croissance comparée, lim
n→+∞

1
(n+1)! |z|n+1Mz = 0. On termine avec le théorème d’encadrement.

• série géométrique complexe
Pour

∑
zn, on détermine le rayon de convergence avec la règle de d’Alembert : R = 1. Pour |z| < 1,∣∣∣∣∣ 1

1 − z
−

n∑
k=0

zk

∣∣∣∣∣ ⩽ |z|n+1

|1 − z|

et on termine avec le théorème d’encadrement.

• fonctions circulaires
On part de

∀x ∈ R, eix =
+∞∑
k=0

ik
k!x

k

et on identifie la partie réelle et la partie imaginaire.

• fonctions hyperboliques

On part de


ex =

+∞∑
k=0

1
k! x

k

e−x =
+∞∑
k=0

(−1)k

k! xk

et L1 + L2 et L1 − L2 donnent les résultats.

• logarithme ln(1 + x)

On part de
∑

(−x)n de rayon de convergence R = 1, avec
+∞∑
n=0

(−x)n = 1
1+x

.

Par le théorème d’intégration terme à terme, pour tout t ∈] − 1, 1[,
t∫

0

1
1 + x

dx =
+∞∑
n=0

t∫
0

(−x)n dx soit ln(1 + t) =
+∞∑
n=0

(−1)n

n + 1 tn+1

En conclusion, pour tout x ∈] − 1, 1[, ln(1 + x) =
+∞∑
n=1

(−1)n−1

n
xn.

Regardons la convergence en R = 1. La suite ( 1
n

) est décroissante de limite nulle. Par le théorème des séries alternées,
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∑ (−1)n−1

n
converge. On peut alors appliquer le théorème d’Abel radial :

+∞∑
n=1

(−1)n−1

n
xn

︸ ︷︷ ︸
=ln(1+x)

−−−→
x→1

+∞∑
n=1

(−1)n−1

n

Par unicité de la limite,
+∞∑
n=1

(−1)n−1

n
= ln(2).

• Arctan
Pour x ∈] − 1, 1[, x2 ∈]0, 1[ et on a

1
1 + x2 = 1

1 − (−x2) =
+∞∑
n=0

(−x2)n =
+∞∑
n=0

(−1)nx2n

Par le théorème d’intégration terme à terme,
t∫

0

1
1 + x2 dx =

+∞∑
n=0

t∫
0

(−1)nx2n dx soit arctan(t) =
+∞∑
n=0

(−1)n

2n + 1 t2n+1

Par ailleurs, par le théorème des séries alternées,
∑ (−1)n

2n+1 converge. On peut alors appliquer le théorème d’Abel radial :

+∞∑
n=0

(−1)n

2n + 1xn

︸ ︷︷ ︸
=arctan(x)

−−−→
x→1

+∞∑
n=0

(−1)n

2n + 1

Par unicité de la limite,
+∞∑
n=0

(−1)n

2n+1 = arctan(1) = π
4 .

• série de type binôme
On considère

∑
n⩾1

a(a−1)...(a−n+1)
n! xn.

Si a ∈ N, les termes a(a−1)...(a−n+1)
n! sont tous nuls à partir du rang n = a + 1 et la série n’est qu’une somme finie, qu’on

reconnaît comme étant la formule du binôme :

pour a ∈ N, ∀x ∈ R, (1 + x)a =
a∑

k=0

(
a

k

)
xk

Si a ̸∈ N, on peut appliquer la règle de d’Alembert : | an+1
an

| = | a−n
n+1 | → 1 et R = 1. Notons S la fonction somme :

∀x ∈] − 1, 1[, S(x) = 1︸︷︷︸
a0

+
+∞∑
n=1

a(a − 1) . . . (a − n + 1)
n!︸ ︷︷ ︸
an

xn

Par ailleurs, posons f : x 7→ (1 + x)a ; f est définie sur ] − 1, 1[ et satisfait :

∀x ∈] − 1, 1[, (1 + x)f ′(x) = af(x) et f(0) = 1 (∗)

Donc f est solution de l’équation différentielle linéaire du premier ordre avec condition initiale :
{

(1 + x)y′ = ay

y(0) = 1
. Par

unicité au problème de Cauchy, f est caractérisée par (∗). Si on montre que S est solution de (∗), alors on aura bien f = S.

On a S(0) = 1. Par le théorème de dérivation terme à terme,

∀x ∈] − 1, 1[, S′(x) =
+∞∑
n=1

a(a − 1) . . . (a − n + 1)
n! nxn−1
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(1 + x)S′(x) =
+∞∑
n=1

a(a − 1) . . . (a − n + 1)
n! nxn−1 +

+∞∑
n=1

a(a − 1) . . . (a − n + 1)
n! nxn

=
+∞∑
j=0

a(a − 1) . . . (a − j)
j! xj +

+∞∑
n=1

a(a − 1) . . . (a − n + 1)
n! nxn

= a +
+∞∑
k=1

(
a(a − 1) . . . (a − k)

k! + a(a − 1) . . . (a − k + 1)k
k!

)
xk

= a +
+∞∑
k=1

a(a − 1) . . . (a − k + 1)
k! (a − k + k)xk

= a + a

+∞∑
k=1

a(a − 1) . . . (a − k + 1)
k! xk

= aS(x)
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