(*) Exercice 1

Montrer que si A est une matrice symétrique de $\mathcal{M}_n(\mathbf{R})$ vérifiant $A^k = I_n$ pour un certain entier $k \ge 2$, alors $A^2 = I_n$. Que dire de la matrice A si k est impair?

(**) Exercice 2 Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbf{R})$. Montrer que si A est symétrique alors

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2} = \sum_{k=1}^{n} \lambda_{k}^{2}$$

avec $\lambda_1, \ldots, \lambda_n$ les valeurs propres (non nécessairement distinctes) de A.

(*) Exercice 3 Soit
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

- 1. Montrer que A est diagonalisable
- 2. Donner les valeurs propres et espaces propres de A.
- 3. Soit \mathcal{B} une base de vecteurs propres de A. Donner une base orthonormée constituée de vecteurs propres de A (on pourra s'aider du procédé d'orthonormalisation de Schmidt). Écrire alors la diagonalisation de A avec une matrice de passage orthogonale.

(**) Exercice 4

- 1. Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice symétrique dont toutes les valeurs propres sont positives. Montrer qu'il existe une matrice symétrique S de valeurs propres positives telle que $A = S^2$.
- 2. Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice inversible. En utilisant la matrice A^{\top} A et la question 1., montrer qu'il existe une matrice orthogonale R et une matrice symétrique S de valeurs propres strictement positives telles que A = RS.
- (*) Exercice 5 Soit A une matrice symétrique réelle d'ordre n, vérifiant $A^3 = -4A$. Montrer que A est la matrice nulle.
- (*) Exercice 6 Soit $A \in \mathcal{M}_n(\mathbb{R})$ et soit $B = A^{\top} A$. On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de son produit scalaire canonique. Hormis 4. et 5., les questions sont indépendantes.
 - 1. Montrer que B est symétrique.
 - 2. Montrer que $Sp(B) \subset \mathbb{R}^+$.
 - 3. Montrer que B=0 si et seulement si A=0.
 - 4. Montrer que $\ker A = \ker B$.
 - 5. En déduire que rg(A) = rg(B).

(*) Exercice 7

1. $E = \mathbb{R}^n$ muni du produit scalaire canonique et a est un vecteur unitaire de E. f est l'endomorphisme de E défini par :

$$\forall x \in E, \quad f(x) = x + 2\langle x, a \rangle a$$

Montrer que f est un endomorphisme autoadjoint de E.

2. $E = \mathcal{M}_n(\mathbb{R})$ muni du produit scalaire $\langle A, B \rangle = \text{Tr}(A^\top B)$. f est l'endomorphisme de E défini par :

$$\forall M \in E, \quad f(M) = M^{\top}$$

Montrer que f est un endomorphisme autoadjoint de E.

3. $E = \mathbb{R}_n[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t) dt$. f est l'endomorphisme de E défini par :

$$f(P) = 2XP' + (X^2 - 1)P''$$

Montrer que f est un endomorphisme autoadjoint de E.

(**) Exercice 8 Soient a et b vecteurs non nuls d'un espace euclidien E. On considère l'endomorphisme f de E défini par :

$$\forall x \in E, \quad f(x) = x + \langle x, a \rangle b$$

Montrer que f est un endomorphisme autoadjoint si et seulement si la famille (a, b) est liée.

- (*) Exercice 9 Soient E un espace euclidien, f et g deux endomorphismes de E qui commutent. On considère une base orthonormée de E, et on note S la matrice de f dans cette base et T la matrice de g dans cette base. On suppose enfin que S est symétrique et que T est antisymétrique.
 - 1. Montrer que $\forall x \in E$, f(x) et g(x) sont orthogonaux.
 - 2. Montrer que $\forall x \in E, \|(f-g)(x)\| = \|(f+g)(x)\|.$
- (**) Exercice 10 Soit $n \in \mathbb{N}^*$. On note E_n le \mathbb{R} -espace vectoriel des polynômes à coefficients réels et de degré inférieur ou égal à n.
 - 1. (a) Montrer que pour tous P et Q éléments de E_n , l'intégrale $\int_{-1}^{1} P(t)Q(t)\sqrt{\frac{1-t}{1+t}} dt$ est convergente.
 - (b) Montrer que l'application $\varphi:(P,Q)\mapsto \langle P,Q\rangle=\int\limits_{-1}^1 P(t)Q(t)\sqrt{\frac{1-t}{1+t}}\,\mathrm{d}t$ est un produit scalaire sur $E_{\mathbb{R}}$
 - 2. Soit ψ définie sur E_n par $\psi(P) = (X^2 1)P'' + (2X + 1)P'$ où P' et P'' désignent les deux premiers polynômes dérivés du polynôme P.
 - (a) Montrer que ψ est un endomorphisme de E_n .
 - (b) ψ est-il bijectif?
 - (c) Montrer que ψ est diagonalisable.
 - 3. (a) Montrer que pour tous P et Q de E_n : $\langle \psi(P), Q \rangle = \int_{-1}^{1} (1-t)^{3/2} (1+t)^{1/2} P'(t) Q'(t) dt$.
 - (b) Retrouver ainsi le fait que ψ est diagonalisable.
- (**) Exercice 11 Soit $n \in \mathbb{N}^*$. On considère l'espace euclidien \mathbb{R}^n muni de son produit scalaire canonique \langle,\rangle et de sa norme associée $\|.\|$. Soit f un endomorphisme autoadjoint de \mathbb{R}^n . On pose $\rho = \max\{|\lambda|, \ \lambda \in \operatorname{Sp}(f)\}$. Montrer que $\rho = \|f\|_{\operatorname{op}}$.
- (**) Exercice 12 Pour $n \in \mathbb{N}$, on note $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n. Soit f_n l'application définie sur $\mathbb{R}_n[X]$ par :

$$\forall P \in \mathbb{R}_n[X], \quad f_n(P)(X) = \frac{(X^2 - 1)}{2}P''(X) + XP'(X) - P(X)$$

- 1. Montrer que f_n est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. On suppose dans cette question que n=3.
 - (a) Déterminer la matrice M_3 de f_3 dans la base canonique de $\mathbb{R}_3[X]$.
 - (b) Déterminer une base de ker f_3 et une base de Im f_3 . Ces espaces sont-ils supplémentaires dans $\mathbb{R}_3[X]$?
 - (c) La matrice M_3 est-elle diagonalisable?
- 3. Pour tout $(P,Q) \in (\mathbb{R}_n[X])^2$, on pose $\langle P,Q \rangle = \int_{-1}^1 P(t)Q(t) dt$.
 - (a) Vérifier que l'on définit ainsi un produit scalaire sur $\mathbb{R}_n[X]$.
 - (b) Montrer que : $\forall (P,Q) \in (\mathbb{R}_n[X])^2$, $\langle f_n(P), Q \rangle = \langle P, f_n(Q) \rangle$. Qu'en déduit-on?
- 4. On continue avec le produit scalaire de la question précédente. Si $k \in [0, n]$ et $P \in \mathbb{R}_n[X]$, on note $p_k(P)$ la projection orthogonale de P sur $\mathbb{R}_k[X]$.

Soit (T_0, T_1, \dots, T_n) la famille définie par : $T_0 = 1$ et pour tout $k \in [1, n]$, $T_k = X^k - p_{k-1}(X^k)$.

- (a) Montrer que (T_0, T_1, \dots, T_n) est une base orthogonale de $\mathbb{R}_n[X]$.
- (b) Montrer que pour tout $k \in [0, n]$, T_k est vecteur propre de f_n et préciser la valeur propre associée.
- (*) Exercice 13 Soit E un espace euclidien et f un endomorphisme de E tel que pour tout vecteur x de E, $\langle f(x), x \rangle = 0$.
 - 1. Montrer que pour tous x et y de E, $\langle f(x), y \rangle = -\langle x, f(y) \rangle$.
 - 2. Montrer que $\ker f = (\operatorname{Im} f)^{\perp}$.
 - 3. Montrer que si $\lambda \in \mathbb{R}$ est valeur propre de f, alors $\lambda = 0$. f est-il diagonalisable?
 - 4. Montrer que la matrice de f dans toute base orthonormée de E est antisymétrique.
 - 5. Soit u un automorphisme autoadjoint de E tel que $f \circ u = u \circ f$.
 - (a) Montrer que $\forall x \in E, \langle f(x), u(x) \rangle = 0.$
 - (b) En déduire que f + u est un automorphisme de E.
- (**) Exercice 14 Soit E un espace euclidien de dimension $n \ge 1$ muni d'un produit scalaire \langle, \rangle . On dit qu'un endomorphisme φ est antisymétrique $si: \forall (x,y) \in E^2, \langle \varphi(x), y \rangle = -\langle x, \varphi(y) \rangle$. Dans tout l'exercice, on considère un endomorphisme φ de E antisymétrique.
 - 1. Établir les propriétés suivantes :
 - (a) Pour tout x de E, on a $\langle x, \varphi(x) \rangle = 0$.
 - (b) Im $\varphi = (\ker \varphi)^{\perp}$.
 - (c) Soit F un sous-espace vectoriel de E. Montrer que si F est stable par φ , alors F^{\perp} est stable par φ .
 - (d) $\ker \varphi = \ker(\varphi^2)$.
 - (e) Le spectre de φ est soit vide soit réduit à $\{0\}$.
 - 2. Montrer que toutes les valeurs propres de φ^2 sont négatives ou nulles.
 - 3. Soit:
 - F un sous-espace vectoriel de E de dimension $p \ge 2$, p pair;
 - α un réel strictement positif;
 - u un endomorphisme antisymétrique de F tel que $u^2 = -\alpha^2 \operatorname{Id}_F$, où Id_F est l'endomorphisme identité de F.
 - (a) On suppose que p=2. Établir l'existence d'une base orthonormale de F dans laquelle la matrice A_{α} de u est donnée par $A_{\alpha}=\begin{pmatrix} 0 & -\alpha \\ \alpha & 0 \end{pmatrix}$.

(b) À l'aide d'un raisonnement par récurrence sur p, montrer qu'il existe une base de F dans laquelle

A l'aide d'un raisonnement par récurrence sur
$$p$$
, montrer qu'il ex la matrice B_{α} de u est donnée par $B_{\alpha} = \begin{pmatrix} A_{\alpha} & (0) \\ (0) & A_{\alpha} & \vdots \\ & (0) & \ddots & (0) \\ & & (0) & A_{\alpha} \end{pmatrix}$.

(*) **Exercice 15** $E = \mathbb{R}^3$. On considère f endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est A (resp. B, C).

$$A = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \qquad B = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{2} & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 \end{pmatrix} \qquad C = \frac{1}{9} \begin{pmatrix} -8 & 4 & 1 \\ 4 & 7 & 4 \\ 1 & 4 & -8 \end{pmatrix}$$

1. Expliquer pour quoi il existe une base orthonormée de \mathbb{R}^3 dans la quelle la matrice de f est de l'une des formes suivantes :

$$\pm I_3, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \text{ avec } \theta \not\equiv 0[\pi]$$

- 2. Préciser si f correspond à : une rotation autour d'un axe (préciser lequel), une réflexion (préciser le plan invariant), ou la composée d'une rotation et d'une réflexion.
- (*) Exercice 16 Déterminer les matrices de $O_n(\mathbb{R})$ qui sont diagonalisables sur \mathbb{R} .
- (*) Exercice 17 Soit $A \in \mathcal{M}_n(\mathbb{R})$. On considère $S = \frac{1}{2}(A + A^{\top})$ et α et β les plus petite et plus grande valeurs propres de S.
 - 1. Pour $X \in \mathcal{M}_{n,1}(R)$, montrer que $X^{\top} SX = X^{\top} AX$.
 - 2. En déduire que $\alpha X^{\top} X \leqslant X^{\top} A X \leqslant \beta X^{\top} X$.
 - 3. Montrer que $\operatorname{Sp}(A) \subset [\alpha, \beta]$.
- (**) Exercice 18 Soient v_1, \ldots, v_n des vecteurs d'un espace euclidien E. On note G la matrice de coefficients $g_{i,j} = \langle v_i, v_j \rangle$.
 - 1. Montrer que $G \in \mathcal{S}_n^+(\mathbb{R})$.
 - 2. Montrer que G est inversible si, et seulement si, la famille (v_1, \ldots, v_n) est libre.
- (***) Exercice 19 $E = \mathbb{R}_n[X]$ pour $n \in \mathbb{N}$.
 - 1. Montrer l'existence et l'unicité d'un polynôme A de E tel que

pour tout
$$P \operatorname{de} E$$
, $P(0) = \int_{0}^{1} A(t)P(t) dt$

- 2. Montrer que A est de degré égal à n.
- (*) Exercice 20 Montrer que toutes les matrices de $O_n(\mathbb{R})$ sont diagonalisables sur \mathbb{C} .
- (\star) Exercice 21 Déterminer les isométries d'un espace euclidien qui sont aussi des endomorphismes autoadjoints.

(**) Exercice 22 Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \ \varphi(M) = \text{Tr}(AM)$$

- (*) Exercice 23 Soit E un espace euclidien et $u \in \mathcal{L}(E)$. Montrer que $\ker(u^* \circ u) = \ker u$ et $\operatorname{Im}(u^* \circ u) = \operatorname{Im} u^*$.
- $(\star\star\star)$ Exercice 24 Soient f et g des endomorphismes d'un espace euclidien E tels que $f^*\circ f=g^*\circ g$.
 - 1. Montrer que $\ker f = \ker g$.
 - 2. Montrer qu'il existe $u \in O(E)$ tel que $g = u \circ f$. Indication : considérer $(f(w_1), \ldots, f(w_r))$ une base orthonormée de Im f et montrer que $(g(w_1), \ldots, g(w_r))$ est une famille orthonormée de E.
- (**) Exercice 25 Soit $p \in \mathcal{L}(E)$ un projecteur d'un espace euclidien E. Montrer que p est une projection orthogonale si, et seulement si, pour tout x de E, $||p(x)|| \leq ||x||$. Indication : considérer les vecteurs x + ty avec $y \in \ker p$ et $x \in \operatorname{Im} p$.
- (*) Exercice 26 Soit $A = \begin{pmatrix} r & s \\ s & t \end{pmatrix} \in \mathcal{S}_2(\mathbb{R})$. Montrer que : $A \in \mathcal{S}_2^{++}(\mathbb{R}) \Leftrightarrow (r > 0 \text{ et } rt s^2 > 0)$.
- (**) Exercice 27 Soient u et v des isométries vectorielles d'un espace euclidien de dimension supérieure ou égale à 1, et $t \in]0,1[$ tel que $(1-t)u+tv \in O(E)$. Montrer que u=v.
- (**) Exercice 28 Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $MM^{\top}M = I_n$. Montrer que M est inversible et symétrique, puis que $M = I_n$.
- (***) Exercice 29 Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. On va montrer qu'il existe une unique matrice $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $B^2 = A$.
 - 1. Montrer l'existence d'une telle matrice B.
 - 2. Soit $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $B^2 = A$. Établir que, pour tout $\lambda \in \mathbb{R}^+$,

$$\ker(B - \sqrt{\lambda}I_n) = \ker(A - \lambda I_n)$$

- 3. Justifier l'unicité de B.
- (**) Exercice 30 Soit $f \in \mathcal{L}(E)$ où E est un espace euclidien. Montrer que $||f^*||_{\text{op}} = ||f||_{\text{op}}$.
- (*) Exercice 31 Soit $f \in \mathcal{L}(E)$ où E est un espace euclidien. On suppose que $\operatorname{Im} f \subset \ker f$. Montrer que $\ker(f + f^*) = \ker f \cap \ker f^*$.
- (*) Exercice 32 On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire usuel $\langle N_1, N_2 \rangle = \operatorname{Tr}(N_1^\top N_2)$. Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$. Déterminer l'adjoint de $f: M \mapsto AM$.
- (*) Exercice 33 Soit $f \in \mathcal{L}(E)$ où E est un espace euclidien. Établir la liste de propriétés suivantes :
 - 1. $\operatorname{Tr}(f) = \operatorname{Tr}(f^*)$

4. $\operatorname{Sp}(f) = \operatorname{Sp}(f^*)$

 $2. \det(f) = \det(f^*)$

5. pour tout $\lambda \in \operatorname{Sp}(f)$, dim $E_{\lambda}(f) = \dim E_{\lambda}(f^*)$.

3. $\chi_f = \chi_{f^*}$

Banque épreuve orale CCINP

Algèbre: 63, 66, 78.