- (\star) Exercice 1 Représenter les parties suivantes de \mathbb{R}^2 et préciser si elles sont ouvertes, fermées, bornées.
 - 1. $E_1 = \{(x, y) \in \mathbf{R}^2 \mid x > 0\}$

4. $E_4 = \{(x, y) \in \mathbf{R}^2 \mid x + y \le 1\}$

2. $E_2 = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 \leq 1\}$

5. $E_5 = \{(x,y) \in \mathbf{R}^2 \mid x^2 + 2xy + y^2 - 1 = 0\}$

- 3. $E_3 = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 > 2\}$
- (**) Exercice 2 Soit E l'espace vectoriel des suites réelles bornées, que l'on munit de la norme infinie. Notons $a = (a_n)$ la suite constante égale à 1 et F le sous-espace vectoriel des suites convergeant vers 0. Montrer que la distance de a à F est égale à 1.
- (*) Exercice 3 Soit E un espace vectoriel normé.
 - 1. Soit F un sous-espace vectoriel de E. Montrer que l'adhérence de F est un sous-espace vectoriel de E.
 - 2. On suppose E de dimension finie. Soit H un hyperplan de E. Montrer que dim $\overline{H} \in \{\dim E 1, \dim E\}$. Trancher entre ces deux possibilités.
- (**) Exercice 4 Dans $E = \mathbb{R}[X]$ muni de la norme donnée par $||P|| = \sup_{t \in [-1,1]} |P(t)|$, on considère $D: P \mapsto P'$. Montrer que l'application D n'est pas continue sur E.
- $(\star\star)$ Exercice 5 Soit E un espace vectoriel normé et F un sous-espace vectoriel non vide de E.
 - 1. Montrer que si F est ouvert, alors F = E.
 - 2. Montrer que si F n'est pas d'intérieur vide, alors F = E.
- (**) Exercice 6 Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ et F le sous-espace vectoriel de E constitué des fonctions continues s'annulant en 0 et en 1.
 - 1. On munit E de la norme : $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$. Montrer que $\overline{F} = F$. Comment formuler autrement cette égalité ?
 - 2. On munit E de la norme : $||f||_1 = \int_0^1 |f(t)| dt$. Montrer que $\overline{F} = E$. Comment formuler autrement cette égalité?
- $(\star\star\star)$ Exercice 7 Déterminer la frontière de \mathbb{Q} .
- (*) **Exercice 8** Soit (E, ||.||) un espace vectoriel normé. Montrer que $f: E \to \mathbb{R}, x \mapsto \frac{1}{1+||x||}$ est k-lipschitzienne pour une valeur de k que l'on précisera. Qu'en déduit-on?
- (*) Exercice 9 Soit (E, ||.||) un espace vectoriel normé. Montrer que $f: x \mapsto \frac{x}{1+||x||}$ est bijective de E dans $\mathcal{B}(0,1)$. Montrer que f et f^{-1} sont continues.
- (*) Exercice 10 Montrer de deux façons que $T: M \mapsto M^{\top}$ est une application continue sur $\mathcal{M}_n(\mathbb{K})$.

- (**) Exercice 11 Montrer la continuité sur $GL_n(\mathbb{K})$ de l'application qui à une matrice associe son inverse. On utilisera la formule de l'inverse par la comatrice.
- (*) Exercice 12 Soit $T : \mathbb{R}[X] \to \mathbb{R}[X]$ défini par T(P) = P'. Étudier la continuité de T lorsqu'on munit $\mathbb{R}[X]$ des normes :

1.
$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)|$$

2.
$$N_2(P) = \sup_{t \in [0,1]} |P(t)|$$

(*) Exercice 13 On munit $E = \mathcal{B}(\mathbb{K}, \mathbb{K})$ de la norme infinie (ensemble des fonctions bornées de \mathbb{K} dans \mathbb{K} , muni de $\|.\|_{\infty}$). Soit $(a_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} . Montrer que la forme linéaire définie sur E par

$$u(f) = \sum_{n=0}^{+\infty} \frac{f(a_n)}{2^n}$$

est continue et déterminer sa norme subordonnée.

- (*) Exercice 14 Soit $E = \mathbb{K}[X]$ muni de la norme donnée par $||P|| = \sup_{t \in [-1,1]} |P(t)|$. On considère $u: P \mapsto P(\frac{X}{2})$. Montrer que u est continue sur E et calculer |||u|||.
- (*) Exercice 15 Soit $E = \{ f \in \mathcal{C}^0([0,1], \mathbb{R}) \mid f(1) = 0 \}$ muni de la norme uniforme. On considère $\varphi : f \in E \mapsto \int_0^1 f(t) dt$. Montrer que φ est continue sur E et calculer $|||\varphi|||$. On pourra considérer les fonctions $f_n : t \mapsto 1 t^n$.
- (**) Exercice 16 Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$.
 - 1. On suppose que $\mathcal{M}_{n,1}(\mathbb{R})$ est muni de la norme infinie. Montrer que $||A|| = \max_{1 \leq i \leq n} \sum_{i=1}^{n} |a_{i,j}|$.
 - 2. On suppose que $\mathcal{M}_{n,1}(\mathbb{R})$ est muni de la norme 1. Montrer que $||A|| = \max_{1 \leq j \leq n} \sum_{i=1}^{n} |a_{i,j}|$.
 - 3. (uniquement pour les 5/2 ou en fin d'année) On suppose que $\mathcal{M}_{n,1}(\mathbb{R})$ est muni de la norme 2. Montrer que $|||A||| = \sqrt{\max(\operatorname{Sp}(A^{\top}A))}$.
- (*) Exercice 17 Montrer qu'une application linéaire $u: E \to F$ est continue si, et seulement si, sa restriction à la sphère unité est bornée.
- $(\star\star)$ Exercice 18
 - 1. Montrer que $M \mapsto \chi_M$ est continue sur $\mathcal{M}_n(\mathbb{K})$.
 - 2. Soit A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ avec A inversible. Montrer que $\chi_{AB} = \chi_{BA}$.
 - 3. En déduire que pour toutes matrices A et B de $\mathcal{M}_n(\mathbb{K})$, $\chi_{AB} = \chi_{BA}$.
- (**) Exercice 19 On note $\mathcal{D}_2(\mathbb{R})$ l'ensemble des matrices diagonalisables de $\mathcal{M}_2(\mathbb{R})$ et $\mathcal{T}_2(\mathbb{R})$ l'ensemble des matrices trigonalisables.
 - 1. Montrer que $\varphi: M \mapsto (\operatorname{Tr}(M))^2 4\det(M)$ est continue sur $\mathcal{M}_2(\mathbb{R})$.
 - 2. Montrer que $M \in \mathcal{M}_2(\mathbb{R})$ est trigonalisable si et seulement si $\varphi(M) \geq 0$.
 - 3. En déduire que $\mathcal{D}_2(\mathbb{R})$ n'est pas dense dans $\mathcal{M}_2(\mathbb{R})$.
 - 4. Montrer que $\overline{\mathcal{D}_2(\mathbb{R})} = \mathcal{T}_2(\mathbb{R})$.

- $(\star\star\star)$ Exercice 20 Soit E un espace vectoriel normé et φ une forme linéaire sur E.
 - 1. Montrer que si φ est continue, alors ker φ est fermé.
 - 2. Réciproquement, on suppose que ker φ est fermé. On raisonne par l'absurde en supposant que φ n'est pas continue. En utilisant la négation du critère de continuité d'une application linéaire, aboutir à une contradiction. Conclure.
- (\star) Exercice 21 Soit f une application définie sur une partie A non vide d'un espace vectoriel normé E, à valeurs dans un espace normé.
 - 1. Montrer que f est uniformément continue si, et seulement si, pour toutes suites (a_n) et (b_n) d'éléments de A telles que $||a_n b_n|| \to 0$, on a $||f(a_n) f(b_n)|| \to 0$.
 - 2. En déduire que la fonction logarithme n'est pas uniformément continue sur \mathbb{R}^+ .
- (**) Exercice 22 Soit E un espace vectoriel normé et $f: \mathbb{R}^+ \to E$ une fonction continue admettant une limite ℓ en $+\infty$. Montrer que f est uniformément continue.
- (*) Exercice 23 Soit E un espace vectoriel normé de dimension finie. Montrer que la sphère unité, $S = \{x \in E, ||x|| = 1\}$, est une partie compacte.
- (*) Exercice 24 Soit K une partie compacte non vide d'un espace vectoriel normé et $x \in E$. On rappelle que $d(x,K) = \inf_{y \in K} \|y x\|$. Montrer qu'il existe $y_0 \in K$ tel que $d(x,K) = \|y_0 x\|$.
- (**) Exercice 25 Montrer que $O_n(\mathbb{R}) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A^\top A = I_n\}$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.
- (***) Exercice 26 Soit (u_n) une suite réelle bornée telle que $u_n + \frac{1}{2}u_{2n} \to 0$. Montrer que la suite u converge, en utilisant un argument de compacité.
- (*) Exercice 27 Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue telle que $\lim_{\|x\| \to +\infty} f(x) = +\infty$. Montrer que f admet un minimum.
- (\star) Exercice 28 Soient K et L deux compacts d'un espace vectoriel normé.
 - 1. Que nous dit le cours au sujet de $K \times L$?
 - 2. Montrer que si K et L sont disjoints, alors $\inf_{(x,y)\in K\times L}\|x-y\|>0$.
- (\star) Exercice 29 Parmi les ensembles suivants, lesquels sont compacts?
 - 1. $E_1 = \{(x, y) \in \mathbb{R}^2, x + y^2 = 1\}$

3. $E_3 = \{(x,y) \in \mathbb{R}^2, y^2 = x(1-2x)\}$

- 2. $E_2 = \{(x, y) \in \mathbb{R}^2, x^2 + y^4 = 1\}$
- $(\star\star\star)$ Exercice 30 Soit K un compact non vide d'un espace vectoriel normé E. Soit $f:K\to K$ une application vérifiant :

$$\forall (x,y) \in K^2, \quad x \neq y \implies ||f(x) - f(y)|| < ||x - y||$$
 (*)

- 1. En considérant $\varphi: x \mapsto ||f(x) x||$, montrer que f admet un unique point fixe, noté α .
- 2. Soit $x \in K$. On considère la suite donnée par $u_0 = x$ et pour $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Montrer que la suite (u_n) admet une unique valeur d'adhérence, égale à α . Qu'en déduit-on?

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que la suite (A^k) soit bornée. Pour $p \in \mathbb{N}^*$, on pose : $(\star \star \star)$ Exercice 31 $B_p = \frac{1}{p} \sum_{k=0}^{p-1} A^k.$

- 1. Montrer que la suite (B_p) possède au moins une valeur d'adhérence B.
- 2. Montrer que $B(I_n A) = 0_n$.
- 3. Montrer que B est une matrice de projection, et que c'est la projection sur $\ker(A-I_n)$ parallèlement à $\operatorname{Im}(A-I_n)$.
- 4. Conclure que la suite (B_p) converge vers B.
- $(\star\star)$ Exercise 32 Montrer que les fonctions suivantes S sont continues sur D.

1.
$$S(x,y) = \sum_{n=1}^{+\infty} \frac{1}{(n+x^2)(n+y^2)}$$
 et $D = \mathbb{R}^2$

1.
$$S(x,y) = \sum_{n=1}^{+\infty} \frac{1}{(n+x^2)(n+y^2)}$$
 et $D = \mathbb{R}^2$. 2. $S(x,y) = \sum_{n=1}^{+\infty} \frac{\cos(ny)}{1+n^2x}$ et $D = \{(x,y), x > 0\}$.

Étudier la continuité en (0,0) des fonctions f suivantes, données par f(0,0)=0 et $(\star\star)$ Exercice 33

1.
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

2.
$$f(x,y) = \frac{x^2y}{x^2+y^2}$$

1.
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 2. $f(x,y) = \frac{x^2y}{x^2 + y^2}$ 3. $f(x,y) = \frac{x^3y^3}{x^4 + y^8}$ 4. $f(x,y) = \frac{x^2y^3}{x^4 + y^8}$

4.
$$f(x,y) = \frac{x^2y^3}{x^4+y^8}$$

 $(\star\star)$ Exercice 34 Les fonctions suivantes ont-elles une limite à l'origine?

1.
$$f(x,y) = \frac{3x^2 + xy}{\sqrt{x^2 + y^2}}$$

3.
$$j(x,y) = \frac{x^2y + yz^2}{x^2 + 2y^2 + 3z^2}$$

5.
$$k(x, y, z) = \frac{xy + yz}{x^2 + 2y^2 + 3z^2}$$

2.
$$g(x,y) = \frac{1-\cos(xy)}{xy^2}$$

4.
$$h(x,y) = \left(\frac{x^2 + y^2 - 1}{x}\sin(x), \frac{\sin(x^2) + \sin(y^2)}{\sqrt{x^2 + y^2}}\right)$$

1.
$$f(x,y) = \frac{3x^2 + xy}{\sqrt{x^2 + y^2}}$$
 3. $j(x,y) = \frac{x^2y + yz^2}{x^2 + 2y^2 + 3z^2}$ 5. $k(x, y) = \frac{1 - \cos(xy)}{xy^2}$ 4. $h(x,y) = \left(\frac{x^2 + y^2 - 1}{x}\sin(x), \frac{\sin(x^2) + \sin(y^2)}{\sqrt{x^2 + y^2}}\right)$

(*) Exercice 35 On considère $g: \left(\begin{array}{cc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & \frac{e^{x^2 + y^2}}{1 + x^2 + y^2} \end{array}\right)$.

1. Montrer que pour tout réel a, il existe R > 0

$$\forall (x,y) \in \mathbb{R}^2 \setminus B_f(0,R), \quad g(x,y) > a$$

- 2. Montrer que g possède un minimum sur \mathbb{R}^2 .
- (*) Exercice 36 Soit \mathcal{C} le cercle trigonométrique (cercle de centre O et rayon 1) dans \mathbb{R}^2 . Montrer que \mathcal{C} est connexe par arcs :
 - 1. par un schéma,
 - 2. par des calculs.
- Nous allons montrer que les sphères d'un \mathbb{R} -espace vectoriel normé E de dimension $(\star\star\star)$ Exercice 37 supérieure ou égale à 2 sont connexes par arcs.
 - 1. Soit S la sphère unité de E et soient a et b dans S, avec $a \neq b$.
 - (a) Dans le cas où $a \neq -b$, en considérant $\gamma(t) = \frac{(1-t)a+tb}{\|(1-t)a+tb\|}$, montrer qu'il existe un chemin continu reliant $a \ge b$ dans S.
 - (b) Traiter le cas où a = -b en utilisant le résultat de la question précédente. On en déduit que S est connexe par arcs.
 - 2. En déduire que toutes les sphères de E sont connexes par arcs.

Banque épreuve orale CCINP

Analyse: 1, 13, 17, 34, 35, 36, 37, 38, 40, 44, 45, 54, 58 bis.