Suites de fonctions

(**) Exercice 1 Étudier la convergence simple et uniforme sur l'intervalle donné de la suite (f_n) dans les cas suivants.

1.
$$f_n: x \mapsto \frac{nx}{1 + n^2x^2}$$
 et $I = \mathbb{R}$

4.
$$f_n: x \mapsto e^{-nx}\sin(2nx)$$
 et $I = \mathbb{R}^+$ puis $I = [a, +\infty]$ $(a > 0)$

2.
$$f_n: x \mapsto (x + \frac{e^{-x}}{n})^2 \text{ et } I = \mathbb{R}^+$$

5.
$$f_n: x \mapsto \frac{1}{(1+x^2)^n}$$
 et $I = \mathbb{R}$ puis $I = [a, +\infty[$ $(a > 0)$

3.
$$f_n: x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ nx^n \ln(x) & \text{si } x \in [0, 1] \end{cases}$$
 et $I = [0, 1]$

(*) Exercice 2 Soit $f_n: x \mapsto n(\cos x)^n \sin x$ et $I = \mathbb{R}$. Étudier la convergence simple sur I. Comparer

$$\lim_{n \to +\infty} \int_{0}^{\pi/2} f_n(t) dt \quad \text{et} \quad \int_{0}^{\pi/2} \lim_{n \to +\infty} f_n(t) dt$$

Qu'en déduit-on?

- (*) Exercice 3 On considère la suite de fonctions $u_n : t \mapsto nt(1-t)^n$ sur [0,1].
 - 1. Étudier la convergence simple de cette suite de fonctions. Y a-t-il convergence uniforme sur [0, 1]?
 - 2. Soit $a \in]0,1[$. Justifier que la suite de fonctions (u_n) converge uniformément sur le segment [a,1]. Y a-t-il convergence uniforme sur]0,1]?
- (*) Exercice 4 Étudier la convergence simple, la convergence uniforme, la convergence sur tout segment de la suite de fonctions (u_n) donnée par

$$u_n(t) = n\sin(t)e^{-nt}$$
 pour tout $t \in \mathbb{R}^+$

- (*) Exercice 5 Pour $n \in \mathbb{N}$, on définit $f_n(x) = \frac{x^n e^{-x}}{n!}$ pour $x \in \mathbb{R}^+$.
 - 1. Montrer que la suite de fonctions (f_n) converge uniformément sur \mathbb{R}^+ vers une fonction f à déterminer.
 - 2. Calculer $\lim_{n \to +\infty} \int_{0}^{+\infty} f_n(t) dt$ et $\int_{0}^{+\infty} f(t) dt$.
- (*) Exercice 6 On pose $f_n(x) = \frac{\ln(1+nx)}{1+n^2x^2}$ pour $n \in \mathbb{N}$.
 - 1. Sur quelle partie D de \mathbb{R} , la suite de fonctions (f_n) converge-t-elle simplement?
 - 2. Est-ce que (f_n) converge uniformément sur D?
- (*) Exercice 7
 - 1. Calculer $\lim_{x\to 1^-} \lim_{n\to +\infty} x^n$ et $\lim_{n\to +\infty} \lim_{x\to 1^-} x^n$.

- 2. Calculer $\lim_{n\to +\infty} \int_0^1 n^2 t e^{-nt} dt$ et $\int_0^1 \lim_{n\to +\infty} n^2 t e^{-nt} dt$.
- (*) Exercice 8 Soit (f_n) une suite de fonctions bornées, avec $f_n : \mathbb{R} \to \mathbb{R}$. On suppose que la suite (f_n) converge uniformément vers f. Montrer que f est bornée. Montrer que le résultat ne persiste pas si on suppose uniquement la convergence simple.
- (*) Exercice 9 Soit (f_n) une suite de fonctions décroissantes définies sur [0,1], telle que (f_n) converge simplement vers la fonction nulle. Montrer que la convergence est en fait uniforme.
- (*) Exercice 10 Soient (f_n) et (g_n) deux suites de fonctions définies sur un même intervalle I et à valeurs dans \mathbb{R} . On suppose que (f_n) et (g_n) convergent uniformément sur I vers respectivement f et g. On suppose de plus que f et g sont bornées. Démontrer que la suite de fonctions (f_ng_n) converge uniformément vers fg.
- $(\star\star\star)$ Exercice 11 Démontrer que la limite uniforme d'une suite de fonctions uniformément continues définies sur un intervalle I de \mathbb{R} est elle-même une fonction uniformément continue.
- $(\star\star\star)$ Exercice 12 Soit f la fonction définie de l'intervalle I=[0,1] dans lui-même par la relation f(x)=2x(1-x), et f_n la fonction itérée d'ordre n de f:

$$f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ facteurs}}$$

- 1. Étudier la convergence simple de la suite de fonctions (f_n) sur [0,1].
- 2. Montrer qu'il y a convergence uniforme sur tout segment de la forme $[a, \frac{1}{2}]$ où $a \in]0, \frac{1}{2}]$. Sans nouveau calcul, expliquer pourquoi il y a convergence uniforme sur tout segment de la forme [a, b] avec 0 < a < b < 1.

Séries de fonctions

- (*) Exercice 13 Étudier la convergence simple puis la convergence uniforme, de la série $\sum u_n$ de fonctions définies sur \mathbb{R} par $u_n(t) = \frac{\sin(nt)}{n^2 + 1}$.
- (*) Exercice 14 Étudier la convergence simple puis la convergence uniforme, de la série $\sum u_n$ de fonctions définies sur \mathbb{R}^+ par $u_n(t) = \frac{(-1)^n}{n+t}$.
- (**) Exercice 15 Soit $S(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}$.
 - 1. Donner le domaine de définition de S.
 - 2. Étudier ses variations et donner la limite de S en $+\infty$.
 - 3. Étudier la continuité de S sur son intervalle de définition.
 - 4. Donner un équivalent simple de S en 0^+ (on utilisera une comparaison série-intégrale).
- (*) Exercice 16 Calculer $\int_{0}^{1} \sum_{n=2}^{+\infty} \left(\frac{1}{n-x} \frac{1}{n+x} \right) dx.$
- (**) Exercice 17 Pour $x \ge 0$, on pose $u_n(x) = \frac{x}{n^2 + x^2}$.

- 1. Montrer que la série $\sum_{n\geq 1} u_n$ converge simplement sur \mathbb{R}^+ .
- 2. Montrer que la série $\sum_{n\geqslant 1}u_n$ converge uniformément sur tout intervalle [0,A] avec A>0.
- 3. Vérifier que, pour tout $n \in \mathbb{N}^*$, $\sum_{k=n+1}^{2n} \frac{n}{n^2 + k^2} \geqslant \frac{1}{5}$. En déduire que la série $\sum u_n$ ne converge pas uniformément sur \mathbb{R}^+ .
- (**) Exercice 18 Soit $f_n(x) = nx^2 e^{-x\sqrt{n}}$ pour $x \in \mathbb{R}_+$ et $n \in \mathbb{N}$.
 - 1. Étudier la convergence simple, la convergence normale et la convergence uniforme de la série $\sum f_n$ sur \mathbb{R}^+ .
 - 2. Mêmes questions sur $[a, +\infty[$ avec a > 0.
- $(\star\star\star)$ Exercice 19 Pour α réel et $n\in\mathbb{N}^*$, on considère les fonctions u_n définies sur [0,1] par :

$$u_n(x) = n^{\alpha} x^n (1 - x)$$

- 1. Pour quels réels α la **suite** (u_n) converge-t-elle uniformément sur [0,1]?
- 2. Pour quels réels α la **série** $\sum u_n$ converge-t-elle uniformément sur [0,1]?
- (**) **Exercice 20** Pour $x \in [0, +\infty[$, on pose $S(x) = \sum_{n=1}^{+\infty} (-1)^{n-1} \ln(1 + \frac{x}{n})$.
 - 1. Montrer que la fonction S est bien définie sur $[0, +\infty[$ et de classe \mathcal{C}^1 .
 - 2. Étudier ses variations.
- (**) Exercice 21 Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}_+$, on pose $u_n(x) = \arctan(n+x) \arctan(n)$.
 - 1. À l'aide, par exemple, de l'inégalité des accroissements finis, montrer que la série $\sum u_n$ converge simplement sur \mathbb{R}_+ .

On pose
$$S(x) = \sum_{n=0}^{+\infty} u_n(x)$$
.

- 2. Montrer que S est continue sur \mathbb{R}_+ .
- 3. () Déterminer la limite de S en $+\infty$. On montrera que pour tout réel x>0, $\arctan(x)+\arctan(\frac{1}{x})=\frac{\pi}{2}$.
- 4. La série de fonctions $\sum u_n$ converge-t-elle uniformément sur les intervalles $[A, +\infty[$ avec A > 0?
- (**) Exercice 22 On donne $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Pour t réel et $n \in \mathbb{N}^*$, on pose $u_n(t) = \frac{\arctan(nt)}{n^2}$.
 - 1. Montrer que la série de fonctions $\sum u_n$ converge simplement sur \mathbb{R} . On note S la fonction somme.
 - 2. Montrer que S est continue sur \mathbb{R} , croissante, et préciser sa parité.
 - 3. Déterminer la limite de S en $+\infty$.
 - 4. $(\star\star\star)$ Soit $N \in \mathbb{N}^*$. Montrer qu'il existe $t_N > 0$ tel que pour tout $t \in]-t_N, t_N[\setminus\{0\},$

$$\sum_{n=1}^{N} \frac{u_n(t)}{t} \ge \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n}$$

- 5. En déduire que la courbe représentative de S admet une tangente verticale au point d'abscisse 0.
- 6. Tracer la courbe représentative de S.

(**) Exercise 23
$$I =]-1, +\infty[$$
 et $S(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right).$

- 1. Montrer que S est définie et continue sur I. Étudier sa monotonie.
- 2. Calculer S(x+1) S(x). En déduire un équivalent de S(x) quand x tend vers -1 par valeurs supérieures.
- 3. Établir que pour tout $p \in \mathbb{N}^*$, $S(p) = \sum_{k=1}^p \frac{1}{k}$. En déduire un équivalent de S(x) en $+\infty$.

(**) Exercice 24 Pour $x \ge 0$, on pose $f_n(x) = \frac{(-1)^n e^{-nx}}{n+1}$.

- 1. Montrer que la série de fonctions $\sum_{n\geq 0} f_n$ converge simplement sur \mathbb{R}^+ . On note S sa somme.
- 2. La série de fonctions considérée converge-t-elle normalement ? uniformément sur \mathbb{R}^+ ?
- 3. Résoudre : $y' y = -\frac{e^x}{e^x + 1}$ sur $]0, \infty[$.
- 4. Montrer que $\lim_{x\to +\infty} S(x)=1$. En déduire l'expression de S à l'aide de fonctions usuelles.

(***) Exercice 25 Soit $S(x) = \sum_{n=1}^{+\infty} \frac{nx^{2n-1}}{1-x^{2n}}$.

- 1. Déterminer le domaine de définition D de S.
- 2. Montrer que S est de classe \mathcal{C}^1 sur D et étudier ses variations.
- 3. Étudier les limites de S aux bornes de D.

(*) Exercice 26 Soit $S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$.

- 1. Montrer que S est définie et de classe \mathcal{C}^1 sur \mathbb{R}_+^* . Montrer que pour tout x > 0, $S'(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(n+x)^2}$.
- 2. À l'aide du critère spécial des séries alternées, trouver la monotonie de S.
- 3. Montrer que pour x > 0, $S(x+1) + S(x) = \frac{1}{x}$. En déduire un équivalent de S(x) en 0.

(*) Exercice 27 On pose $D(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$.

- 1. Montrer que la fonction D est définie et de classe \mathcal{C}^1 sur $]0, +\infty[$.
- 2. Vérifier que pour x > 0,

$$D(x) = \sum_{p=1}^{+\infty} \left(\frac{1}{(2p-1)^x} - \frac{1}{(2p)^x} \right)$$

À l'aide d'une comparaison série-intégrale, déterminer alors la limite de D(x) quand x tend vers 0 par valeurs supérieures.

Approximation polynomiale

(★★) Exercice 28 Approximation polynomiale de la racine carrée.

On considère la suite $(P_n)_{n\in\mathbb{N}}$ de polynômes définie par $P_0=0$ et pour tout $n\in\mathbb{N},$ $P_{n+1}=P_n+\frac{1}{2}(X-P_n^2)$.

- 1. Montrer que la suite $(P_n)_{n\in\mathbb{N}}$ est bien polynomiale et préciser le degré de P_n .
- 2. Montrer que pour tout $n \in \mathbb{N}$, tout $x \ge 0$,

$$P_{n+1}(x) - \sqrt{x} = (P_n(x) - \sqrt{x}) \left(1 - \frac{1}{2}(P_n(x) + \sqrt{x})\right)$$

3. Montrer que pour tous $n \in \mathbb{N}$ et $x \in [0,1], 0 \leqslant P_n(x) \leqslant P_{n+1}(x) \leqslant \sqrt{x}$.

- 4. En déduire que la suite $(P_n)_{n\in\mathbb{N}}$ converge simplement sur [0,1], en croissant, vers une fonction f à préciser.
- 5. Montrer que pour tout $x \in [0,1]$ et tout $n \in \mathbb{N}$,

$$0 \leqslant \sqrt{x} - P_n(x) \leqslant \sqrt{x} \left(1 - \frac{\sqrt{x}}{2}\right)^n$$

- 6. Prouver alors que la convergence de $(P_n)_{n\in\mathbb{N}}$ vers f est uniforme.
- (*) Exercice 29 Sur $\mathbb{R}[X]$, on définit les deux normes N_1 et N_2 par

$$N_1(P) = \sup_{t \in [-2,-1]} |P(t)| \text{ et } N_2(P) = \sup_{t \in [1,2]} |P(t)|$$

On note f la fonction définie sur l'intervalle [-2,2] ainsi : pour tout $x \in [-2,-1]$, $f(x) = x^2$, pour tout $x \in [-1,1]$, f(x) = 1 et pour tout $x \in [1,2]$, $f(x) = x^3$.

- 1. Représenter graphiquement la fonction f et justifier l'existence d'une suite de fonctions polynômes (P_n) qui converge uniformément vers la fonction f sur [-2,2].
- 2. Démontrer que cette suite de polynômes (P_n) converge dans $\mathbb{R}[X]$ muni de la norme N_1 vers X^2 et étudier sa convergence dans $\mathbb{R}[X]$ muni de la norme N_2 .
- $(\star\star\star)$ Exercice 30 Soient $f:[0,1]\to\mathbb{C}$ une fonction continue et, pour $n\in\mathbb{N}^*$, le polynôme B_n défini par :

$$\forall x \in [0, 1], \quad B_n(x) = \sum_{k=0}^n \binom{n}{k} f(\frac{k}{n}) x^k (1-x)^{n-k}$$

- 1. Calculer B_n pour $f: x \mapsto 1$, $f: x \mapsto x$, et $f: x \mapsto x^2$.
- 2. Déduire des calculs précédents que pour tous $n \in \mathbb{N}^*$ et $x \in [0,1]$,

$$\sum_{k=0}^{n} (k - nx)^{2} \binom{n}{k} x^{k} (1 - x)^{n-k} = nx(1 - x) \leqslant \frac{n}{4}$$

- 3. Soit $\varepsilon > 0$.
 - (a) Justifier l'existence d'un réel $\alpha>0$ tel que pour tout $(x,y)\in[0,1]^2$ vérifiant $|x-y|\leqslant\alpha,$ $|f(x)-f(y)|\leqslant\frac{\varepsilon}{2}.$
 - (b) En déduire que pour tous $n \in \mathbb{N}^*$ et $x \in [0,1]$, $|B_n(x) f(x)| \leq \frac{\varepsilon}{2} + \frac{\|f\|_{\infty}}{2n\alpha^2}$.
 - (c) Prouver alors que la suite de polynômes $(B_n)_{n\in\mathbb{N}^*}$ converge uniformément vers f sur le segment [0,1].

Banque épreuve orale CCINP

Analyse: 8, 9, 10, 11, 12, 14, 16, 48, 53.