Soit (u_n) une suite vectorielle de l'espace normé E. Soit $\ell \in E$. Rappeler la définition de (*) Exercice 1 $u_n \to \ell$ et montrer que l'opération limite est compatible avec le passage à la norme : $u_n \to \ell \Rightarrow ||u_n|| \to ||\ell||$.

(*) Exercice 2

Vérifier que N définit une norme sur $E = \mathbb{R}[X]$, où $N(P) = \sup_{t \in [-1,1]} |P(t)|$.

- (*) Exercice 3 Soit $n \in \mathbb{N}^*$.
 - 1. Pour $x \in \mathbb{R}^+$, $f_n(x) = xe^{-nx}$. Calculer $||f_n||_{\infty}$.
 - 2. Pour $x \in \mathbb{R}$, $f_n(x) = \sin^n(x)\cos(x)$. Calculer $||f_n||_{\infty}$.
- On munit $E = \mathcal{C}([0,1],\mathbb{R})$ des trois normes $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$. Étudier la convergence (*) Exercice 4 vers la fonction nulle ℓ des suites vectorielles :
 - 1. (f_n) avec $f_n: x \mapsto x^n$
- 2. (g_n) avec $g_n: x \mapsto \sqrt{n}x^n$ 3. (h_n) avec $h_n: x \mapsto nx^n$.

(*) Exercice 5

On admet que l'on définit deux normes sur l'espace vectoriel E des suites complexes bornées en posant :

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$
 $N(u) = \sup_{n \in \mathbb{N}} (|u_{2n}| + |u_{2n+1}|)$

Montrer que N et $\|.\|_{\infty}$ sont équivalentes.

(*) Exercice 6

On considère $E = \mathcal{C}^1([0,1],\mathbb{R})$ l'espace des fonctions de classe \mathcal{C}^1 sur [0,1]. On définit :

$$N_1(f) = |f(0)| + ||f'||_{\infty}$$
 $N_2(f) = ||f||_{\infty} + ||f'||_{\infty}$

- 1. Justifier que pour $f \in E$, $||f||_{\infty}$ et $||f'||_{\infty}$ sont bien définies.
- 2. Vérifier, au choix, que N_1 ou N_2 est une norme sur E. On admet que N_1 et N_2 sont des normes sur
- 3. Montrer que N_1 et N_2 sont équivalentes. N_1 et N_2 sont-elles équivalentes à $\|.\|_{\infty}$?
- Montrer que $A = \{(x_1, \dots, x_n) \in [0, +\infty]^n \mid x_1 + \dots + x_n \leq 1\}$ est une partie bor- $(\star\star)$ Exercice 7 née et convexe de \mathbb{R}^n .
- $(\star\star)$ Exercice 8 Soit $n \in \mathbb{N}$ et E_n l'espace vectoriel des polynômes réels de degré inférieur ou égal à n. Montrer qu'il existe $\lambda > 0$ vérifiant :

$$\forall P \in E_n, \quad \int_{0}^{1} |P(t)| dt \geqslant \lambda \sup_{t \in [0,1]} |P(t)|$$

Montrer que $\varphi(A,B) = \operatorname{Tr}(A^{\top}B)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. En déduire une (*) Exercice 9 norme euclidienne sur $\mathcal{M}_n(\mathbb{R})$.

- (**) Exercice 10 Pour $A \in \mathcal{M}_n(\mathbb{R})$, on définit $||A|| = \max_{1 \le i \le n} \left(\sum_{j=1}^n |a_{i,j}|\right)$.
 - 1. Calculer (on détaillera) ||A|| pour $A = \frac{1}{3} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ -4 & 0 & 2 \end{pmatrix}$.
 - 2. (a) Pour A et B dans $\mathcal{M}_n(\mathbb{R})$, montrer que $||A + B|| \le ||A|| + ||B||$.
 - (b) Montrer que $||A|| \leq \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{i,j}|$.
 - (c) Montrer que $||AB|| \leq ||A|| \times ||B||$, puis que pour tout $n \in \mathbb{N}$, $||A^n|| \leq ||A||^n$.
 - (d) Vérifier que pour tout $k \in \mathbb{N}^*$, $A^{k+1} B^{k+1} = A(A^k B^k) + (A B)B^k$.
 - (e) On pose $c = \max(||A||, ||B||)$. Montrer par récurrence :

$$\forall k \in \mathbb{N}^*, \quad \|A^k - B^k\| \leqslant kc^{k-1}\|A - B\|$$

- (f) En déduire que si une suite $(A_p)_{p\in\mathbb{N}}$ converge vers A alors pour tout $k\in\mathbb{N}^*$, la suite $(A_p^k)_{p\in\mathbb{N}}$ tend vers A^k .
- (**) Exercice 11 On munit $E = \mathcal{C}([a, b], \mathbb{R})$ des trois normes :

$$N_1(f) = \int_a^b |f(t)| dt$$
 $N_2(f) = \sqrt{\int_a^b |f(t)|^2 dt}$ $N_{\infty}(f) = \max_{t \in [a,b]} |f(t)|$

1. Montrer que

$$N_1(f) \leqslant (b-a) N_{\infty}(f)$$
 $N_2(f) \leqslant \sqrt{b-a} N_{\infty}(f)$ $N_1(f) \leqslant \sqrt{b-a} N_2(f)$

et montrer que chacune des ces inégalités est optimale.

- 2. Montrer que ces trois normes ne sont pas équivalentes.
- (***) Exercice 12 Soit $L \in \mathcal{M}_p(\mathbb{R})$.

Montrer qu'il existe une matrice $M \in \mathcal{M}_p(\mathbb{R})$ telle que $M^n \xrightarrow[n \to +\infty]{} L$ si, et seulement si, $L^2 = L$.

- $(\star\star)$ Exercice 13 u est une suite réelle.
 - 1. Parmi les suites ci-dessous, quelles sont celles qui sont extraites d'une autre?

$$(u_{2n}), (u_{3n}), (u_{6n}), (u_{3\times 2^n}), (u_{3\times 2^{n+1}}), (u_{2^n}), (u_{2^{n+1}})$$

- 2. Soit $(u_{\varphi(n)})$ une suite extraite de (u_n) . Montrer que toute suite extraite de $(u_{\varphi(n)})$ est une suite extraite de (u_n) .
- $(\star\star)$ Exercice 14 u est une suite réelle.
 - 1. On suppose que (u_{2n}) et (u_{2n+1}) convergent vers la même limite. Prouver que la suite u est convergente.
 - 2. Donner un exemple de suite telle que (u_{2n}) converge, (u_{2n+1}) converge, mais (u_n) n'est pas convergente.
 - 3. On suppose que les suites (u_{2n}) , (u_{2n+1}) et (u_{3n}) sont convergentes. Prouver que (u_n) est convergente.
- $(\star\star\star)$ Exercice 15 u est une suite réelle.
 - 1. On suppose que (u_n) est croissante et qu'elle admet une suite extraite convergente. Que dire de (u_n) ?

- 2. On suppose que (u_n) est croissante et qu'elle admet une suite extraite majorée. Que dire de (u_n) ?
- (**) Exercice 16 Soit (E, ||.||) un espace vectoriel normé de dimension finie et u une suite de $E^{\mathbb{N}}$. On suppose que

$$\forall k \in \mathbb{N}, \ \|u_{k+1} - u_k\| \leqslant (\frac{1}{2})^k$$

Montrer que la suite (u_k) converge.

- (***) Exercice 17 Soit A une matrice trigonalisable de $\mathcal{M}_n(\mathbb{R})$ admettant une seule valeur propre α telle que $\alpha \in]-1,1[$. Montrer que la série $\sum A^k$ converge.
- (**) Exercice 18 Soit $E = \mathcal{M}_n(\mathbb{R})$, muni d'une norme sous-multiplicative $\|.\|$, c'est-à-dire vérifiant :

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2, \|AB\| \leqslant \|A\| \|B\|$$

Soit $H \in E$, ||H|| < 1.

- 1. Montrer que $\sum H^k$ converge.
- 2. (5/2 uniquement) Montrer que $I_n H$ est inversible, d'inverse $\sum_{k=0}^{+\infty} H^k$.

Banque épreuve orale CCINP

Algèbre : 61 questions 1 et 2.