- (*) Exercice 1 Diagonaliser $M = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
- (*) **Exercice 2** Montrer sans calcul que $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ n'est pas diagonalisable.
- (*) Exercice 3

Sans calculer les valeurs propres de $B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & -5 \end{pmatrix}$, montrer que B admet au moins une valeur propre strictement positive et au moins une valeur propre strictement négative.

- (*) Exercice 4 $M = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Donner les éléments propres de M (valeurs propres et espaces propres) vue comme matrice de $\mathcal{M}_3(\mathbb{C})$.
- (*) **Exercice 5** Sans gros calculs, trouver les valeurs propres de $M = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$.
- (**) Exercice 6 Déterminer les valeurs propres des matrices suivantes :

$$A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \qquad A_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \qquad A_4 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$

- (*) **Exercice 7** On note $A = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix}$.
 - 1. A est-elle diagonalisable?
 - 2. Donner les valeurs propres de A.
 - 3. Donner les sous-espaces propres de A.
 - 4. En déduire une matrice $D \in \mathcal{M}_3(\mathbb{R})$, à coefficients diagonaux rangés dans l'ordre croissant, et une matrice inversible $P \in \mathcal{M}_3(\mathbb{R})$, à coefficients diagonaux tous égaux à 1, telles que $A = PDP^{-1}$, et calculer P^{-1} .
- (\star) Exercice 8 Vrai ou Faux? Démontrez vos réponses. A est une matrice d'ordre n.
- 1. Si A est diagonalisable, alors A^2 l'est aussi.
 Vrai
Faux
 \Box

 2. Si A^2 est diagonalisable, alors A l'est aussi.
 Vrai
Faux
 \Box

 3. A admet un nombre fini de vecteurs propres.
 Vrai
Faux
 \Box

- (*) Exercice 9 Soit $A \in \mathcal{M}_n(\mathbb{K})$. Démontrer que A et A^{\top} ont les mêmes valeurs propres.
- (*) Exercice 10 Soit $M \in \mathcal{M}_n(\mathbb{R})$.
 - 1. Donner les valeurs propres de 6M en fonction des valeurs propres de M.
 - 2. Plus généralement, pour a et b réels, donner les valeurs propres de A=aM+bI en fonction des valeurs propres de M.
- (**) Exercice 11 Soit A une matrice vérifiant : $\begin{cases} \forall (i,j) \in [\![1,n]\!]^2, & a_{i,j} \in [\![0,1]\!] \\ \forall i \in [\![1,n]\!], & \sum\limits_{j=1}^n a_{i,j} = 1 \end{cases}$
 - 1. Montrer que 1 est valeur propre de A.
 - 2. Soit λ une valeur propre de A. Montrer que $|\lambda| \leq 1$.
- (*) **Exercice 12** Les matrices $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & -1 \\ 5 & 6 \end{pmatrix}$ sont-elles semblables?
- (*) Exercice 13 Soit $n \ge 2$. On considère une matrice $A \in \mathcal{M}_n(\mathbb{R})$ de rang 1. Montrer que $A + I_n$ ou $A I_n$ est inversible.
- (**) Exercice 14 Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$.
 - 1. Montrer que si λ est une valeur propre non nulle de AB, alors λ est une valeur propre non nulle de BA.
 - 2. On suppose que 0 est valeur propre de AB. On introduit les endomorphismes f et g de \mathbb{K}^n canoniquement associés à A et B.
 - (a) Montrer que $f \circ g$ n'est pas bijectif.
 - (b) On raisonne par l'absurde en supposant que 0 n'est pas valeur propre de BA. Que dire de $g \circ f$? Montrer que g est surjectif et que f est injectif. Montrer que $f \circ g$ est bijectif. Conclure.
 - 3. Quel résultat a été finalement montré dans cet exercice?
- (**) Exercice 15 Pour $A \in \mathcal{M}_n(\mathbb{R})$, on pose $||A|| = \sup_{1 \le i \le n} \sum_{j=1}^n |a_{i,j}|$. Montrer que $\operatorname{Sp}(A) \subset [-||A||, ||A||]$.
- (**) Exercice 16 Soit $E = \mathbb{R}[X]$ et $f \in \mathcal{L}(E)$ donné par f(P) = (X+1)(X+3)P' XP. Donner les éléments propres de f.
- (*) Exercice 17 Déterminer les éléments propres complexes de $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ avec $\theta \not\equiv 0[\pi]$.
- (**) Exercice 18 Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonalisable. Montrer que $\ker(A) = \ker(A^2)$.
- (**) Exercice 19 Soit u un endomorphisme de rang 1 d'un espace vectoriel E. Montrer qu'il existe un réel λ tel que $u^2 = \lambda u$.
- (**) Exercice 20 Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ vérifiant AB BA = A, et φ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ donné par $\varphi(M) = MB BM$.
 - 1. Calculer $A^kB BA^k$ pour $k \in \mathbb{N}$.
 - 2. À quelle condition la matrice A^k est-elle vecteur propre de φ ?
 - 3. En déduire que A est nilpotente.

- Soient u, v des endomorphismes d'un espace vectoriel complexe E de dimension finie non nulle. Les deux questions sont indépendantes.
 - 1. On suppose que $u \circ v = v \circ u$. Montrer que u et v ont un vecteur propre en commun.
 - 2. On suppose que $u \circ v = 0$. Montrer que u et v ont un vecteur propre en commun.
- Soit $n \ge 3$, a et b complexes avec $b \ne 0$. Donner les valeurs propres de la matrice $M = \begin{pmatrix} a & (b) \\ & \ddots & \\ & & a \end{pmatrix}$. M est-elle diagonalisable?
- (\star) Exercice 23 Soit $A \in \mathcal{M}_n(\mathbb{R})$ de déterminant strictement négatif. Montrer que A possède au moins une valeur propre réelle.
- $(\star\star\star)$ Exercice 24 Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ et $x \in \mathbb{K}$. En multipliant à droite et/ou à gauche la matrice par blocs:

$$M = \begin{pmatrix} \lambda I_n & A \\ B & I_n \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$$

par des matrices triangulaires par blocs convenables, établir : $\chi_{AB} = \chi_{BA}$.

- Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ vérifiant AB = BA avec A nilpotente. Calculer (*) Exercice 25 Tr(AB).
- (*) Exercice 26 Donner le spectre, et étudier la diagonalisabilité des matrices :

1.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

(*) Exercice 27 Montrer que les matrices suivantes sont diagonalisables et les diagonaliser :

1.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$2. \ A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $(\star\star)$ Exercice 28 Donner les éléments propres des endomorphismes de E dans les situations suivantes :

3

1.
$$E = \mathcal{C}^{\infty}(\mathbb{R})$$
 et $T : f \mapsto T(f)$, où $T(f)(x) = e^{-x} \int_{0}^{x} f(t)e^{t} dt$

2.
$$E = \mathbb{C}^{\mathbb{N}}$$
 et $\Phi : u \mapsto v$ donnée par
$$\begin{cases} v_0 &= u_0 \\ v_n &= \frac{u_n + u_{n-1}}{2} \text{ pour } n \geqslant 1 \end{cases}$$
3. $E = \mathcal{M}_n(\mathbb{R})$ et $\varphi : M \mapsto M^{\top}$
4. $E = \mathcal{M}_n(\mathbb{R})$

3.
$$E = \mathcal{M}_n(\mathbb{R}) \text{ et } \varphi : M \mapsto M^{\top}$$

4.
$$E = \mathcal{M}_n(\mathbb{R})$$
 et $\psi : M \mapsto M + \text{Tr}(M)I_n$

- (*) Exercice 29 Soit $A \in \mathcal{M}_n(\mathbb{K})$.
 - 1. Montrer que $\chi_A = \chi_{A^{\top}}$. En déduire que $\operatorname{Sp}(A) = \operatorname{Sp}(A^{\top})$.
 - 2. Montrer que pour tout $\lambda \in \operatorname{Sp}(A)$, dim $E_{\lambda}(A) = \dim E_{\lambda}(A^{\top})$.

(***) Exercice 30 Soit E un espace vectoriel de dimension 2n+1, de base (e_1, \ldots, e_{2n+1}) , et $u \in \mathcal{L}(E)$ défini par :

$$u(e_1) = e_1 + e_{2n+1}$$
 $u(e_i) = e_{i-1} + e_i \text{ pour } i \in [2, 2n+1]$

- 1. Montrer que le polynôme caractéristique de u est $(X-1)^{2n+1}-1$.
- 2. Donner les valeurs propres complexes de u.
- 3. En déduire $\prod_{k=0}^{2n} \cos(\frac{k\pi}{2n+1}).$
- (**) Exercice 31 Soit A une matrice d'ordre $n \ge 2$ et de rang 1. Montrer que A est diagonalisable si, et seulement si, $Tr(A) \ne 0$.
- (*) Exercice 32 Soit $f: M \mapsto M + 2M^{\top}$, endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
 - 1. Déterminer les éléments propres de f. f est-il diagonalisable?
 - 2. Calculer Tr(f) et det(f).
- (**) Exercice 33 Soit $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{pmatrix}$.
 - 1. Montrer que A n'est pas diagonalisable.
 - 2. Montrer que A est semblable dans $\mathcal{M}_3(\mathbb{R})$ à $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.
 - 3. En déduire A^n pour $n \in \mathbb{N}$. (Après le chapitre Séries vectorielles) Calculer alors $\exp(A) = \sum_{k=0}^{+\infty} \frac{A^k}{k!}$.
- (*) Exercice 34 Soit $A = \begin{pmatrix} -5 & 3 \\ 6 & -2 \end{pmatrix}$.
 - 1. Montrer que A est diagonalisable et donner ses valeurs propres.
 - 2. En déduire qu'il existe une matrice B telle que $B^3 = A$.
- (**) Exercice 35 Soit $A = \begin{pmatrix} 4 & 1 \\ 4 & 4 \end{pmatrix}$. On étudie l'équation $(E): M^2 M = A$ d'inconnue $M \in \mathcal{M}_2(\mathbb{R})$.
 - 1. Diagonaliser A en précisant une matrice de passage P.
 - 2. Soit M une solution de E. Justifier que $P^{-1}MP$ est diagonale.
 - 3. Résoudre (E).
- $(\star\star)$ Exercice 36 (oral Mines Télécom Mouhamadou)
- Soit $A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$. Sans calculs (ou vraiment, le moins possible) déterminer le rang de A, son noyau;

montrer que A est diagonalisable et la diagonaliser.

Banque épreuve orale CCINP

Algèbre : 59, 67, 69, 70, 72 (subtil et intéressant), 73 (recherche d'un commutant), 74 (système différentiel), 75 (système différentiel), 83.