Révisions sur les suites numériques

- (*) Exercice 1 Pour $n \in \mathbb{N}^*$, $u_n = \sum_{k=0}^n \frac{1}{2n+2k-1}$. Montrer que (u_n) est monotone et convergente.
- (*) Exercice 2 Soit $f(x) = 2xe^{-x}$ et la suite u donnée par $\begin{cases} u_0 &= 0, 1 \\ u_{n+1} &= f(u_n) \text{ pour } n \in \mathbb{N} \end{cases}$
 - 1. Montrer: $\forall n \in \mathbb{N}, 0 \leq u_n < u_{n+1} \leq 1$.
 - 2. Montrer que la suite u converge vers $\ln 2$.
- (***) Exercice 3 Étudier la suite donnée par $u_0 \ge -2$ et $u_{n+1} = \sqrt{2 + u_n}$. On sera amené à discuter suivant les valeurs de u_0 .
- (*) Exercice 4 Étudier la monotonie et la convergence des suites réelles suivantes :
 - 1. u donnée par son premier terme u_0 et la relation $u_{n+1} = u_n + e^{u_n}$.
 - 2. v donnée par son premier terme v_0 et la relation $v_{n+1} = v_n e^{v_n}$.
 - 3. w donnée par : $w_0 > 0$ et la relation de récurrence $w_{n+1} = \sqrt{w_n^2 + w_n}$.
- (*) Exercice 5 On pose, pour tout réel x, $f(x) = x^2 x$ et on considère la suite u définie par la valeur de u_0 réel et la relation : $u_{n+1} = f(u_n)$ pour tout entier naturel n.
 - 1. Étudier rapidement les variations de f et déterminer le signe de f(x) x.
 - 2. On suppose que $u_0 > 2$.
 - (a) Montrer que $u_n > 2$ pour tout entier naturel n.
 - (b) En déduire la monotonie de (u_n) . Préciser la limite de u_n quand $n \to +\infty$.
 - (c) Montrer que pour tout réel x supérieur ou égal à 2, $f'(x) \ge 3$. En déduire que pour tout entier naturel n, $u_{n+1} u_n \ge 3(u_n u_{n-1})$, puis que $u_{n+1} u_n \ge 3^n(u_1 u_0)$.
 - (d) Retrouver alors le résultat de b).
 - 3. Ici $u_0 = -3$. Que peut-on dire quant à la convergence de (u_n) ?
 - 4. On suppose ici que $\frac{1}{2} < u_0 < 2$. Dans le cas où « $\forall n \in \mathbb{N}, \frac{1}{2} < u_n < 2$ », que peut-on dire de la monotonie et de la convergence de (u_n) ? En déduire qu'il existe un entier n_0 tel que $u_{n_0} \notin]\frac{1}{2}, 2[$.
- (**) Exercice 6 On considère la fonction f_n définie, pour tout réel x, pour $n \in \mathbb{N}^*$, par :

$$f_n(x) = x^5 + nx - 1$$

- 1. Montrer que, pour n entier supérieur ou égal à 1, il existe un unique réel u_n tel que $f_n(u_n) = 0$.
- 2. Montrer que $0 \le u_n \le \frac{1}{n}$. Donner un équivalent de u_n .
- (**) Exercice 7 Soit, pour $n \in \mathbb{N}^*$, $f_n : x \mapsto \ln x + x n$.
 - 1. Étudier les variations de f_n et montrer que l'équation $f_n(x) = 0$ admet une unique solution x_n .

- 2. (a) Montrer que pour x > 0, $\ln x \le x$.
 - (b) Montrer que $\frac{n}{2} \leqslant x_n \leqslant n$.
 - (c) Donner un équivalent de x_n puis montrer que $x_n = n \ln n + o(\ln n)$.

(★★) Exercice 8

- 1. Montrer que $\forall n \in \mathbb{N}^*$, il existe un unique réel y_n solution de l'équation : $\ln x + x = \frac{1}{n}$.
- 2. Étudier la convergence de la suite (y_n) . En notant ℓ sa limite, donner un équivalent de $y_n \ell$ quand n tend vers $+\infty$.

(⋆) à (⋆⋆) Exercice 9

- 1. Calculer les limites suivantes : $\lim_{n \to +\infty} \lim_{p \to +\infty} \left(1 \frac{1}{n}\right)^p$ et $\lim_{p \to +\infty} \lim_{n \to +\infty} \left(1 \frac{1}{n}\right)^p$.
- 2. Soit x réel. Calculer $\lim_{n\to+\infty} \left(1-\frac{1}{n}\right)^{\lfloor nx\rfloor}$.
- 3. Calculer

$$\lim_{n\to +\infty} \left(\frac{n}{n+1}\right)^n \qquad \lim_{n\to +\infty} \left(\frac{n}{n+1}\right)^{\sqrt{n}} \qquad \lim_{n\to +\infty} n^2 \left(e^{\frac{1}{n}} - e^{\frac{1}{n+1}}\right)$$

- 4. Donner un équivalent de $\sqrt{n+1} \sqrt{n}$, de $\sqrt{\ln(n+1)} \sqrt{\ln n}$ et $n^2 \ln(\cos(\frac{1}{n})) + \frac{n^2}{2} \sin^2(\frac{1}{n})$.
- 5. Donner le développement asymptotique à 3 termes de

(a)
$$\frac{\ln(n+1)}{\ln(n)}$$

(b)
$$(n+1)\ln(n+1) - n\ln n$$

(*) Exercice 10 Étudier la convergence de
$$(z_n)$$
, $z_n = \frac{n^2 + in + 2}{in^2 + 1}$.

Séries numériques

 (\star) Exercice 11 Étudier la nature des séries de terme général u_n dans les cas suivants :

$$1. \ a_n = \frac{1}{\sqrt{n}} \sin \frac{\pi}{2n}$$

$$4. \ d_n = \ln\left(\cos(\frac{2}{n})\right)$$

$$8. \ h_n = \frac{1}{\sqrt{n} \ln n}$$

$$2. \ b_n = \frac{n-1}{3^n - 2}$$

5.
$$e_n = ne^{-\sqrt{n}} \ln n$$

6. $f_n = \frac{\cos(2n)}{3n^2 - 4n + 1}$

$$9. \ i_n = \frac{\ln n}{n}$$

$$3. c_n = \cos(\frac{1}{n}) - 1$$

$$7. \ g_n = \frac{1}{n^2 \ln n}$$

10.
$$j_n = \frac{(-1)^n \ln n}{n}$$

(*) Exercice 12 Vérifier que

$$\frac{1}{\binom{n+p}{n}} = \frac{p!}{p-1} \left(\frac{1}{(n+p-1)(n+p-2)\dots(n+1)} - \frac{1}{(n+p)(n+p-1)\dots(n+2)} \right)$$

et en déduire que $\sum_{n\geqslant 0}\frac{1}{\binom{n+p}{n}}$ converge et calculer sa somme (réponse $\frac{p}{p-1}$).

- (*) Exercice 13 Soit u la suite donnée par $\begin{cases} u_0 \in]0; 1[\\ u_{n+1} = u_n u_n^2 \end{cases}$
 - 1. Montrer que $\forall n \in \mathbb{N}, u_n \in]0,1[$, que (u_n) est décroissante et étudier sa convergence.
 - 2. Montrer que $\sum u_n^2$ converge et donner sa somme.
 - 3. Montrer que $\sum \ln(\frac{u_{n+1}}{u_n})$ diverge.

- 4. En déduire, par utilisation d'un théorème de comparaison, que $\sum u_n$ diverge.
- (**) Exercice 14 On considère la suite donnée par $u_0 = -1$ et par la relation $u_{n+1} = \frac{1}{2} \left(u_n + \sqrt{u_n^2 + 2^{-n}} \right)$.
 - 1. Calculer u_1 . Étudier la monotonie de (u_n) .
 - 2. Montrer que $\forall n \in \mathbb{N}^*$, $u_{n+1} u_n \leqslant \frac{1}{2} (\sqrt{2})^{-n}$ (on pourra utiliser une quantité conjuguée).
 - 3. En déduire que (u_n) converge.
- (**) Exercice 15 Soit (u_n) une suite à termes positifs ou nuls. Montrer que les séries de termes généraux u_n , $\frac{u_n}{1+u_n}$, $\ln(1+u_n)$ sont de même nature.
- (★★) Exercice 16
 - 1. Pour $n \in \mathbb{N}^*$, on note $R_n = \sum_{k=n+1}^{\infty} \frac{1}{k^2 2^k}$. Montrer que cette quantité est bien définie.
 - 2. Montrer que $0 \leqslant R_n \leqslant \frac{1}{(n+1)^2 2^n}$. En déduire une fonction Python permettant de calculer une valeur approchée de $\sum_{k=1}^{\infty} \frac{1}{k^2 2^k}$ à une précision $\varepsilon > 0$ près.
- (**) Exercice 17 On considère la série de terme général $u_n = \frac{\sin(2^n)}{2^n}$.
 - 1. Montrer que la série $\sum u_n$ converge absolument. On note $S_n = \sum_{k=0}^n u_k$, $S = \sum_{k=0}^\infty u_k$ et $R_n = S S_n$.
 - 2. Soit $n \in \mathbb{N}$. Montrer que $|R_n| \leqslant \frac{1}{2^n}$.
 - 3. Écrire une fonction Python pour l'obtention d'une valeur approchée de S à 10^{-p} près.
- (***) Exercice 18 Calcul de $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - 1. Montrer que pour tout $n \in \mathbb{N}^*$, $\int_0^{\pi} (\frac{1}{2\pi}t^2 t) \cos nt \, dt = \frac{1}{n^2}$.
 - 2. Montrer que pour tous $n \in \mathbb{N}^*$ et $t \in]0, \pi]$,

$$\sum_{n=1}^{N} \cos nt = \frac{1}{2} \sin(Nt) \frac{\cos \frac{t}{2}}{\sin \frac{t}{2}} + \frac{1}{2} \cos(Nt) - \frac{1}{2}$$

3. Soit $\varphi:[0,\pi]\to\mathbb{R}$ une fonction de classe $\mathcal{C}^1.$ Montrer que

$$\lim_{N \to +\infty} \int_{0}^{\pi} \varphi(t) \sin(Nt) dt = 0 = \lim_{N \to +\infty} \int_{0}^{\pi} \varphi(t) \cos(Nt) dt$$

4. Soit h définie sur $[0,\pi]$ par $h(t)=\frac{t}{\sin\frac{t}{2}}$ pour $t\neq 0$ et h(0)=2.

En appliquant le théorème de la limite de la dérivée, montrer que h est de classe \mathcal{C}^1 sur $[0,\pi]$.

- 5. Montrer finalement que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- (*) Exercice 19 Montrer que $(n+1)\ln(n+1) n\ln n \sim \ln n$ et en déduire un équivalent de $\sum_{k=1}^{n} \ln k$.
- (*) Exercice 20 On considère la suite donnée par $u_0 = 1$ et la relation $u_{n+1} = u_n e^{-u_n}$ pour $n \in \mathbb{N}$.

- 1. Montrer que la suite (u_n) converge et donner sa limite.
- 2. Donner la limite de la suite $(\frac{1}{u_{n+1}} \frac{1}{u_n})$. En déduire un équivalent de u_n .
- (**) Exercice 21 On pose $u_n = \frac{n!e^n}{\sqrt{2\pi}n^{n+\frac{1}{2}}}$ et $a_n = \ln(u_n)$.
 - 1. Rappeler la formule de Stirling. En déduire $\lim u_n$.
 - 2. Montrer que $a_{n+1}-a_n\sim -\frac{1}{12n^2}$. En déduire que $a_n\sim \frac{1}{12n}$.
 - 3. Montrer finalement que $n! = \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n} \left(1 + \frac{1}{12n} + o(\frac{1}{n})\right)$
- (***) Exercice 22 Soit $(u_n)_{n\geqslant 1}$ une suite réelle vérifiant : $\forall n\in\mathbb{N}^*,\ u_{n+1}=u_n+\frac{e^{-u_n}}{n}$.
 - 1. Montrer que la suite u diverge. En déduire que $\lim u_n = +\infty$.
 - 2. Montrer que $e^{u_{n+1}} e^{u_n} \sim \ln(n+1) \ln(n)$.
 - 3. Montrer finalement que $u_n = \ln(\ln n) + o(1)$.
- (***) Exercice 23 Soit u une suite réelle vérifiant : $\forall n \in \mathbb{N}^*, u_{n+1} = u_n + e^{-u_n}$. On pose $w_n = e^{u_{n+1}} e^{u_n}$.
 - 1. Montrer que u_n tend vers $+\infty$.
 - 2. Montrer que $w_n \sim 1$ et en déduire un équivalent de u_n .
 - 3. Montrer que $w_n 1 \sim \frac{1}{2n}$ et en déduire un développement asymptotique de u_n à une précision $o(\frac{\ln(n)}{n})$.
- (*) à (**) Exercice 24 Soit (u_n) une suite telle que $u_n = \frac{\cos(u_{n-1})}{n}$ pour $n \in \mathbb{N}^*$.
 - 1. Quelle est la nature de la série $\sum \frac{(-1)^n}{n}$?
 - 2. Déterminer la limite de (u_n) , un équivalent de u_n , et la nature de la série $\sum u_n$.
 - 3. À l'aide d'un développement asymptotique de u_n , donner la nature de la série $\sum (-1)^n u_n$.
- (★★) Exercice 25
 - 1. (a) Montrer que $\frac{(-1)^n}{(-1)^{n-1}+\sqrt{n}} \sim \frac{(-1)^n}{\sqrt{n}}$.
 - (b) Quelle est la nature de la série $\sum \frac{(-1)^n}{\sqrt{n}}$?
 - (c) Montrer que la série $\sum \frac{(-1)^n}{(-1)^{n-1} + \sqrt{n}}$ diverge. Commentaire?
 - 2. En discutant sur le réel $\alpha > 0$, déterminer la nature de la série $\sum \frac{(-1)^n}{(-1)^{n-1} + n^{\alpha}}$.
- $(\star\star)$ Exercice 26 En discutant sur les paramètres réels a et b, donner la nature des séries

$$\sum \frac{(-1)^n}{n^a} \qquad \text{et} \qquad \sum \ln(1 + \frac{(-1)^n}{n^b})$$

 (\star) Exercice 27 Déterminer la nature des séries de terme général :

$$a_n = n \sin \frac{1}{n}$$
 $b_n = \frac{e^{-2n} + n}{n^2 + 1}$ $c_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$

- (*) Exercice 28
 - 1. Trouver trois réels a, b et c tels que $\forall n \in \mathbb{N}, n \geqslant 3$, on ait : $\frac{2n-1}{n^3-4n} = \frac{a}{n-2} + \frac{b}{n} + \frac{c}{n+2}$. Montrer que $\sum_{n=3}^{\infty} \frac{2n-1}{n^3-4n}$ converge et calculer $\sum_{n=3}^{\infty} \frac{2n-1}{n^3-4n}$.

- 2. Montrer par deux méthodes que $\sum \ln \left(1 \frac{1}{(n+1)^2}\right)$ converge. Calculer $\sum_{n=1}^{+\infty} \ln \left(1 \frac{1}{(n+1)^2}\right)$.
- (**) Exercice 29 On admet (vu en cours) que : $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$. On se propose de déterminer un équivalent de : $u_n = \prod_{k=2}^{n} \left(1 + \frac{(-1)^k}{\sqrt{k}}\right)$.
 - 1. Vérifier que pour tout $n \ge 2$, $\ln u_n = \sum_{k=2}^n \ln \left(1 + \frac{(-1)^k}{\sqrt{k}}\right)$.
 - 2. Montrer que $\sum \frac{(-1)^k}{\sqrt{k}}$ converge.
 - 3. Montrer que la série $\sum \ln \left(1 + \frac{(-1)^k}{\sqrt{k}}\right)$ diverge.
 - 4. On considère $a_n = \ln u_n \ln(u_{n-1}) \frac{(-1)^n}{\sqrt{n}} + \frac{1}{2n} \frac{(-1)^{3n}}{3n\sqrt{n}}$. Donner la nature de la série de terme général a_n .
 - 5. On pose $C_n = \sum_{k=3}^n \left(\frac{(-1)^k}{\sqrt{k}} + \frac{(-1)^{3k}}{3k\sqrt{k}} + a_k \right) + \frac{3}{4} + \ln u_2 \frac{1}{2}\gamma$. Justifier que la suite (C_n) est convergente.
 - 6. En déduire l'existence d'une constante C telle que $\ln u_n = -\frac{1}{2} \ln n + C + o(1)$. Donner alors un équivalent de u_n .

(*) Exercice 30

- 1. Montrer que la série $\sum \frac{1}{\sqrt{k}} \frac{1}{\sqrt{k+1}}$ converge et donner sa somme.
- 2. (a) Donner un équivalent de $u_k = \frac{1}{\sqrt{k}} \frac{1}{\sqrt{k+1}}$. Retrouver que la série $\sum \frac{1}{\sqrt{k}} \frac{1}{\sqrt{k+1}}$ converge.
 - (b) Déduire de a. la nature de la série de terme général ku_k .
- (*) Exercice 31 Pour *n* entier naturel non nul, on pose $I_n = \int_1^e x^2 (\ln x)^n dx$.
 - 1. Montrer que $\forall x \in [1, e], \ln x \leq \frac{x}{e}$. En déduire $\lim_{n \to +\infty} I_n$.
 - 2. (a) Montrer que $\forall n \in \mathbb{N}^*$, $I_{n+1} = \frac{e^3}{3} \frac{n+1}{3}I_n$.
 - (b) En déduire qu'il existe une constante $k \neq 0$, à préciser, telle que $I_n \sim \frac{k}{n}$.
 - (c) Quelle est la nature de la série de terme général I_n ?
 - (d) Quelle est la nature de la série de terme général $(-1)^n \frac{I_n}{n}$?
 - 3. On donne $I_0 = \frac{1}{3}(e^3 1)$. Écrire un programme en Python qui calcule et affiche les valeurs de I_1, \ldots, I_{50} . Retrouvez-vous 1.b. et pourquoi?
- (*) Exercice 32 x désigne un réel élément de [0,1[.
 - 1. (a) Pour tout n de \mathbb{N}^* et pour tout t de [0,x], calculer la somme $\sum_{p=1}^n t^{p-1}$.
 - (b) En déduire que : $\sum_{p=1}^{n} \frac{x^{p}}{p} = -\ln(1-x) \int_{0}^{x} \frac{t^{n}}{1-t} dt$.
 - (c) Montrer que $\lim_{n \to +\infty} \int_{0}^{x} \frac{t^n}{1-t} dt = 0$.
 - (d) Établir alors que la série de terme général $\frac{x^p}{p}$ est convergente et que $\sum_{p=1}^{\infty} \frac{x^p}{p} = -\ln(1-x)$.
 - 2. (a) Après avoir vérifié que, pour tout entier naturel n non nul, on a $\frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$, montrer que la série de terme général $\frac{x^{n+1}}{n(n+1)}$ est convergente.
 - (b) Utiliser la première question pour établir que : $\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} = x + (1-x)\ln(1-x).$

(*) Exercice 33

- 1. Pour k entier supérieur ou égal à 2, montrer que : $\int_{k-1}^{k} (\ln t)^2 dt \leq (\ln k)^2 \leq \int_{k}^{k+1} (\ln t)^2 dt$. Vérifier que l'inégalité de droite est aussi vérifiée pour k=1.
- 2. On pose $S_n = \sum_{k=2}^{n} (\ln k)^2$.
 - (a) Montrer que pour $n \ge 3$, on a : $\int_{1}^{n} (\ln t)^2 dt \le S_n \le \int_{1}^{n} (\ln t)^2 dt + (\ln n)^2.$
 - (b) Vérifier que la fonction $t \mapsto t((\ln t)^2 2 \ln t + 2)$ est une primitive de $t \mapsto (\ln t)^2$.
 - (c) Montrer alors que $S_n \sim n(\ln n)^2$.
- 3. On pose $b_n = n(\ln n)^2$ et $w_n = S_n b_n$, pour $n \ge 2$, et $w_1 = 0$.
 - (a) Vérifier que $w_n = \sum_{k=2}^{n} (w_k w_{k-1})$.
 - (b) Montrer que $w_k w_{k-1} \sim -2 \ln k$. En déduire que $\lim w_n = -\infty$.
- (*) Exercice 34 En discutant en fonction de $a \in \mathbb{R}$, donner la nature de la série $\sum (n^3 + an)^{1/3} \sqrt{n^2 + 3}$.
- (**) Exercice 35 Donner un équivalent de $\sqrt{1} + \sqrt{2} + \cdots + \sqrt{n}$ (on pourra effectuer une comparaison série-intégrale).

Séries vectorielles (pour plus tard)

- (*) **Exercice 36** Prouver la convergence et déterminer la somme de la série $\sum A^k$ où $A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
- (*) **Exercice 37** Soit $a \in \mathbb{C}$. Étudier la convergence de la série $\sum A^n$ où $A = \frac{1}{2} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$.
- (**) Exercice 38 Soit $E = \mathbb{K}_n[X]$. Pour $P \in E$, on pose D(P) = P' et T(P) = P(X+1). On admet que D et T sont des endomorphismes de E. Montrer que la série $\sum \frac{D^k}{k!}$ converge et que $\sum_{k=0}^{+\infty} \frac{D^k}{k!} = T$.
- (**) Exercice 39 Soit E un espace vectoriel normé de dimension finie et $f: E \to E$ pour laquelle il existe $k \in [0, 1[$ tel que

$$\forall (x,y) \in E^2, \|f(x) - f(y)\| \le k\|x - y\|$$

- 1. Montrer que f possède au plus un point fixe (vecteur v tel que f(v) = v).
- 2. Soit $a \in E$ et la suite u définie par $u_0 = a$ et pour $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - (a) Montrer que la série $\sum u_{n+1} u_n$ converge.
 - (b) En déduire que f admet un point fixe.

Banque épreuve orale CCINP

Séries numériques : 5, 6, 7, 8. 1), 43, 46.

Séries vectorielles : 61.