(*) Exercice 1

On donne ici la valeur de l'intégrale $I = \int_{-\infty}^{+\infty} e^{-t^2/2} dt = \sqrt{2\pi}$.

- 1. En déduire sans calcul la valeur de $J = \int_{0}^{+\infty} e^{-t^2/2} dt$.
- 2. À l'aide de changements affines, calculer alors $K = \int_{0}^{+\infty} e^{-x^2} dx$ et $L = \int_{0}^{+\infty} e^{-25x^2} dx$.

(*) Exercice 2

À l'aide de changements de variables affines, calculer les intégrales suivantes :

$$I_1 = \int_{0}^{+\infty} \frac{1}{1 + (t - 1)^2} dt$$
 $I_2 = \int_{0}^{+\infty} \frac{1}{25 + t^2} dt$ $I_3 = \int_{1}^{+\infty} \frac{1}{t^2 + 3} dt$

(*) Exercice 3

Étudier la convergence des intégrales suivantes :

$$I_{1} = \int_{2}^{+\infty} \frac{1}{\sqrt{x^{3} - 1}} dx \qquad I_{2} = \int_{1}^{+\infty} \ln(1 + \frac{1}{x^{2}}) dx \qquad I_{3} = \int_{0}^{+\infty} e^{-t^{2}} dt$$

$$I_{4} = \int_{0}^{+\infty} t^{2} e^{-t} dt \qquad I_{5} = \int_{-\infty}^{+\infty} \frac{x}{1 + x^{2}} dx \qquad I_{6} = \int_{1}^{+\infty} \frac{1}{x^{x}} dx$$

$$I_{7} = \int_{-\infty}^{0} e^{x} \cos(x^{2}) dx \qquad I_{8} = \int_{0}^{+\infty} \frac{1}{1 + e^{ax}} dx$$

(*) Exercice 4

Étudier la nature de $\int_{0}^{2} \frac{1 - e^{t} + a \sin t}{t^{2}} dt$, a étant un paramètre réel.

(*) Exercice 5

Montrer que l'intégrale $\int_{0}^{+\infty} \frac{1}{\sqrt{x(x+1)}} dx$ converge. La calculer en faisant le changement de variable $u = \sqrt{x}$.

(**) Exercice 6

Montrer que les intégrales I et J convergent et sont égales, où $I = \int_{0}^{1} \frac{\ln x}{1+x^2} dx$ et $J = \int_{1}^{+\infty} \frac{-\ln x}{1+x^2} dx$.

En déduire que l'intégrale $\int\limits_0^{+\infty} \frac{\ln x}{1+x^2} \, \mathrm{d}x$ converge et donner sa valeur.

(**) Exercice 7

Étudier la nature des intégrales impropres suivantes (α et β sont des réels):

$$I = \int_{0}^{+\infty} \frac{1}{t(1+\sqrt{t})} dt, \quad J = \int_{0}^{+\infty} \frac{t^{\alpha}}{1+t^{\beta}} dt, \quad K = \int_{-\infty}^{+\infty} \frac{1}{e^{t}+t^{2}e^{-t}} dt$$

(*) Exercice 8

1. Décomposition en éléments simples. Trouver a, b, c réels tels que $\forall t \in \mathbb{R}^*$, on ait :

$$\frac{1}{t(1+t)^2} = \frac{a}{t} + \frac{b}{1+t} + \frac{c}{(1+t)^2}$$

2. Les intégrales suivantes convergent-elles? Si oui, donner leur valeur.

$$\int_{1}^{\infty} \frac{1}{t(1+t)^2} dt \quad \text{et} \quad \int_{1}^{\infty} \frac{\ln t}{(1+t)^3} dt$$

(*) Exercice 9

Soit $f: t \mapsto \frac{t \sin t}{t^2 + 1}$. On considère : $I_1 = \int_0^{+\infty} f(t) dt$ et $I_2 = \int_0^{+\infty} |f(t)| dt$.

1. (a) Pour x réel, on introduit $I(x) = \int_0^x f(t) dt$. Montrer que

$$I(x) = -\frac{x \cos x}{1 + x^2} + \int_0^x \frac{(1 - t^2) \cos t}{(t^2 + 1)^2} dt$$

(b) En déduire que l'intégrale I_1 est une intégrale convergente.

2. Pour x réel et $k \in \mathbb{N}$, on introduit $J(x) = \int_{0}^{x} |f(t)| dt$ et $u_k = \int_{k\pi}^{(k+1)\pi} \frac{t|\sin t|}{1+t^2} dt$.

(a) Vérifier que pour $n \in \mathbb{N}^*$, $J(n\pi) = \sum_{k=0}^{n-1} u_k$.

(b) Montrer que pour $k \in \mathbb{N}$, $u_k = \int_0^\pi \frac{(t+k\pi)\sin t}{(t+k\pi)^2+1}\mathrm{d}t$. En déduire que $u_k \geqslant \frac{2k\pi}{[(k+1)\pi]^2+1}$.

(c) Montrer que $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{2k\pi}{[(k+1)\pi]^2 + 1} = +\infty.$

(d) En déduire que $\lim_{n \to +\infty} J(n\pi) = +\infty$.

(e) En déduire que l'intégrale I_2 est une intégrale divergente.

3. En rapport avec la propriété de convergence absolue du cours, que montre cet exercice?

(**) Exercice 10

1. Par décomposition en éléments simples, montrer que $I=\int\limits_1^{+\infty}\frac{1}{t(1+t^2)}\,\mathrm{d}t$ converge et la calculer (réponse : $I=\frac{\ln 2}{2}$).

 2

2. En déduire que $J=\int\limits_{1}^{+\infty} \frac{\arctan t}{t^2}\,\mathrm{d}t$ converge et donner sa valeur.

(★) à (★★) Exercice 11

Déterminer la nature des intégrales :

$$I_1 = \int_0^{+\infty} \frac{\cos(x)}{\sqrt{x} + x^2} dx \qquad I_2 = \int_0^1 \frac{\ln(1 - t^2)}{t^2} dt \qquad I_3 = \int_0^{+\infty} \sin(t) \ln\left(\frac{t^2 + 2}{t^2 + 1}\right) dt$$

(*) Exercice 12

Montrer que l'intégrale $I = \int_{0}^{+\infty} \frac{\ln t}{(1+t)^2} dt$ converge, et la calculer avec le changement de variables $u = \frac{1}{t}$.

$(\star\star)$ Exercice 13

Soit $\alpha \in]0,1]$. Étudier la convergence de $\int_{1}^{+\infty} \frac{e^{it}}{t^{\alpha}} dt$. Pourquoi en déduit-on la convergence de $\int_{1}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$?

(**) Exercice 14 \bigcirc Montrer que si f et g sont de carré intégrable, alors fg est intégrable.

(*) Exercice 15 Calculer $\int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} dt$:

- par primitive usuelle,
- par changement de variable $t = \sin u$.

 (\star) Exercice 16 Déterminer la nature des intégrales suivantes :

$$1. \int_{0}^{1} \frac{\mathrm{d}t}{(1-t)\sqrt{t}}$$

4.
$$\int_{0}^{+\infty} \frac{\ln(1+t)}{t^{3/2}} dt$$

$$2. \int_{0}^{+\infty} \ln(t)e^{-t} dt$$

5.
$$\int_{0}^{+\infty} \sin(\frac{1}{t^2}) dt$$

$$3. \int_{0}^{+\infty} \frac{t}{e^t - 1} \, \mathrm{d}t$$

 $(\star\star)$ Exercice 17 Étudier l'intégrabilité des fonctions sur les intervalles considérés :

1.
$$t \mapsto \frac{\ln(t)}{t^2} \operatorname{sur} [1, +\infty[$$

2.
$$t \mapsto \frac{\ln(t)}{t^2} \text{ sur } [0, 1]$$

3.
$$t \mapsto \frac{1}{\ln(t)} \text{ sur }]0,1[.$$

(**) Exercice 18 Représenter dans un repère orthonormé du plan l'ensemble des points M de coordonnées (x,y) pour lesquels l'intégrale $\int\limits_{1}^{+\infty} \frac{\mathrm{d}t}{t^x(t-1)^y}$ converge.

 $(\star\star\star)$ Exercice 19 Intégrales de Bertrand. Pour α et β réels, on étudie la nature de l'intégrale

$$I_{\alpha,\beta} = \int_{e}^{+\infty} \frac{1}{t^{\alpha} (\ln t)^{\beta}} \, \mathrm{d}t$$

3

- 1. On suppose que $\alpha < 1$. En utilisant la limite quand t tend vers $+\infty$ de $t \frac{1}{t^{\alpha}(\ln t)^{\beta}}$, donner la nature de $I_{\alpha,\beta}$.
- 2. On suppose que $\alpha > 1$. Montrer que l'intégrale étudiée converge.
- 3. On suppose que $\alpha = 1$. À l'aide d'un changement de variable, déterminer la nature de $\int_{e}^{+\infty} \frac{1}{t(\ln t)^{\beta}} dt$.
- 4. Récapituler : $I_{\alpha,\beta}$ converge si, et seulement si,
- (*) Exercice 20 Existence et calcul de $\int_{0}^{+\infty} \frac{1}{(x+1)(x+2)(x+3)} dx$.

(**) Exercice 21

Par mise sous forme canonique puis changement de variable affine, calculer $\int_{0}^{+\infty} \frac{1}{t^2+t+1} dt$.

- (**) Exercice 22 Soit f une fonction de classe C^1 sur \mathbb{R}^+ telle que f et f' sont intégrables sur \mathbb{R}^+ . Montrer que f admet la limite 0 en $+\infty$.
- (**) Exercice 23 Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue et décroissante, telle que $\int_0^{+\infty} f(t) dt$ converge.
 - 1. Montrer que $\lim_{x\to +\infty} f(x) = 0$ et que f est positive.
 - 2. Justifier que $\lim_{x\to +\infty} \int_{x/2}^x f(t) dt = 0$.
 - 3. En déduire que $f(x) = o(\frac{1}{x})$.
- (**) Exercice 24 À l'aide d'intégrations par parties, calculer $\int_{0}^{1} (x \ln x)^{n} dx$ pour $n \in \mathbb{N}$.
- (*) Exercice 25 Donner une primitive de $f_1: x \mapsto e^{2x} \sin(x), f_2: x \mapsto \arctan(x)$ et $f_3: x \mapsto \arcsin(x)$.
- $(\star\star\star)$ Exercice 26 Soit f continue et intégrable sur $[1, +\infty[$. A-t-on $\lim_{+\infty} f = 0$? a-t-on f bornée?
- (***) Exercice 27 Pour $n \in \mathbb{N}$, on pose $u_n = \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}x}{1 + x^4(\sin x)^2}$.
 - 1. Vérifier que $u_n = \int_0^\pi \frac{\mathrm{d}x}{1 + (x + n\pi)^4 (\sin x)^2}$.
 - 2. Encadrer u_n à l'aide de termes de $w_n = \int_0^\pi \frac{1}{1 + (n\pi)^4 (\sin x)^2} dx$.
 - 3. Vérifier que $w_n = \int_{-\pi/2}^{\pi/2} \frac{1}{1 + (n\pi)^4 (\sin x)^2} dx$. Effectuer le changement de variables $t = \tan x$ et calculer w_n .
 - 4. En déduire un équivalent de u_n .

- 5. En déduire que $\int_{0}^{+\infty} \frac{1}{1 + x^4 \sin^2 x} dx$ converge.
- (\triangle) Exercice 28 Déterminer un équivalent simple de :

$$I(x) = \int_{x}^{1} \frac{\mathrm{d}t}{e^t - 1} \text{ quand } x \to 0^+$$
 et $J(x) = \int_{x}^{+\infty} \frac{\mathrm{d}t}{t^3 + 1} \text{ quand } x \to +\infty$

- (**) Exercice 29 Étudier l'intégrabilité sur]0,1] de $f: x \mapsto \int_{1}^{x} \frac{e^{t}}{t} dt$.
- (**) Exercice 30 Donner un équivalent quand x tend vers $+\infty$ de $\int_{x}^{+\infty} e^{-t^2} dt$.
- (***) Exercice 31 Pour x > 0, on pose $f(x) = \int_{0}^{+\infty} \frac{e^{-t}}{x+t} dt$.
 - 1. Montrer que pour tout x > 0, l'intégrale f(x) est convergente.
 - 2. Déterminer un équivalent simple de f(x) quand x tend vers 0.
- (***) Exercice 32 Soit $I = \int_{0}^{1} \frac{t-1}{\ln(t)} dt$.
 - 1. Justifier l'existence de l'intégrale définissant I.
 - 2. Établir $I = \int_{0}^{+\infty} \frac{e^{-x} e^{-2x}}{x} dx$.
 - 3. En déduire que $I = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{2\varepsilon} \frac{e^{-x}}{x} dx$.
 - 4. En déduire que $I = \ln 2$.
- (**b**) Exercise 33 Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue vérifiant $\lim_{x \to +\infty} f(x) = 0$. On pose $u_n = \int_0^n f(t) dt$ pour $n \in \mathbb{N}$.
 - 1. Montrer que $\int_{0}^{+\infty} f(t) dt$ converge si, et seulement si, la suite (u_n) converge, et que dans ce cas :

$$\int_{0}^{+\infty} f(t) dt = \lim_{n \to +\infty} \int_{0}^{n} f(t) dt$$

2. On enlève l'hypothèse $\lim_{x\to +\infty} f(x) = 0$. Que dire ?

Théorème de convergence dominée

5

(*) Exercice 34 (oral CCINP)

Pour
$$n \in \mathbb{N}^*$$
, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^4)^n}$.

- 1. Montrer que I_n existe pour tout $n \in \mathbb{N}^*$.
- 2. Montrer que (I_n) converge et déterminer sa limite.
- 3. (a) Pour $n \in \mathbb{N}^*$, trouver une relation de récurrence entre I_n et I_{n+1} .
 - (b) Trouver d'une autre manière la limite de (I_n) .

(★★★) Exercice 35 (oral Mines-Télécom)

En effectuant le changement de variables $x = \frac{1}{2}(1 + \frac{t}{n})$, montrer que

$$\int_{1/2}^{+\infty} \frac{\mathrm{d}x}{x^n + (1-x)^n} \underset{n \to +\infty}{\sim} \frac{\pi}{4} \times \frac{2^{n-1}}{n}$$

(★★) Exercice 36 (oral Mines-Télécom)

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{+\infty} \frac{e^{-x}}{\sqrt{n+x}} dx$.

- 1. Justifier que l'intégrale généralisée I_n est convergente.
- 2. Justifier que la suite (I_n) est monotone et en déduire qu'elle converge.
- 3. Déterminer α réel tel que la suite $(n^{\alpha}I_n)$ converge vers une limite non nulle.
- 4. Préciser la nature des séries $\sum I_n$ et $\sum (-1)^n I_n$.

Banque épreuve orale CCINP

Intégrales: 28, 56.

Théorème de convergence dominée : 25, 26.