- (*) Exercice 1 Exprimer $\sum_{k=0}^{n} (-1)^k a_k$ en fonction de $\sum_{k=0}^{n} a_{2k}$ et $\sum_{k=0}^{n} a_{2k+1}$.
- (*) Exercice 2 Soient a et $b \in \mathbb{C}$. Montrer (sans faire de récurrence) que

$$\forall n \in \mathbb{N}, \ a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^{n} a^k b^{n-k}$$

(*) Exercice 3 Montrer que $\sum \frac{1}{(2k)!}$ et $\sum \frac{1}{(2k+1)!}$ convergent, et calculer

$$S = \sum_{k=0}^{\infty} \frac{1}{(2k)!}$$
 et $T = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!}$

- (*) Exercice 4 On donne la formule : $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$
 - 1. Calculer $\sum_{i=1}^{n} \sum_{j=1}^{n} |i j|.$

4. Calculer $S_1 = \sum_{i=0}^n \sum_{k=i}^n \frac{i}{k+1}$ (réponse $\frac{n(n+1)}{4}$).

2. Calculer $\sum_{i=1}^{n} \sum_{j=1}^{n} (i+j).$

- 5. Calculer $S_2 = \sum_{i=0}^{n} \sum_{k=i}^{n} \frac{i^2}{k+1}$ (réponse $\frac{n(n+1)(4n+5)}{36}$).
- 3. Pour i fixé entre 1 et n, calculer $\sum_{j=1}^{n} \min(i, j)$.
- (**) Exercice 5 Pour $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$, calculer les sommes $S_n = \sum_{k=0}^n \cos(k\theta)$ et $T_n = \sum_{k=0}^n \sin(k\theta)$.
- (**) Exercice 6 Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Calculer $C_n = \sum_{k=0}^n \binom{n}{k} \cos(kx)$.
- (**) Exercice 7 Soient $n \in \mathbb{N}$, $x \in \mathbb{R}$. Exprimer $\cos(nx)$ et $\sin(nx)$ en fonction de puissances successives de $\cos x$ et $\sin x$.
- (*) Exercice 8 Calculer les deux sommes : $S_n = \sum_{0 \le k \le n, k \text{ pair}} \binom{n}{k}$ et $T_n = \sum_{0 \le k \le n, k \text{ impair}} \binom{n}{k}$
- (**) Exercice 9 Calculer $(1+i)^n$ de deux façons différentes et en déduire les sommes suivantes :

$$\sum_{k|0 \le 2k \le n} (-1)^k \binom{n}{2k} \quad \text{et} \quad \sum_{k|0 \le 2k+1 \le n} (-1)^k \binom{n}{2k+1}$$

- (*) Exercice 10
 - 1. Montrer que, pour $0 \le k \le p \le n$, on a $\binom{n}{k} \binom{n-k}{p-k} = \binom{n}{p} \binom{p}{k}$.

- 2. En déduire les sommes $S_1 = \sum_{k=0}^{p} \binom{n}{k} \binom{n-k}{p-k}$ et $S_2 = \sum_{k=i}^{n-1} \binom{n}{k} \binom{k}{i}$.
- (*) Exercice 11 En utilisant la formule de Pascal, éventuellement par récurrence (mais pas obligatoirement!), montrer que pour tout couple (n, p) d'entiers naturels vérifiant $0 \le p \le n$, on a

$$\sum_{k=p}^{n} \binom{k}{p} = \binom{n+1}{p+1}$$

- (**★★**) Exercice 12
 - 1. Soit $n \in \mathbb{N}^*$. Vérifier l'identité $\sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \sum_{k=n+1}^{2n} \frac{1}{k}$.
 - 2. En déduire la valeur de la somme harmonique alternée : $\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} = \ln 2.$
- (**) Exercice 13 Pour $(n, p) \in (\mathbb{N}^*)^2$, on pose

$$u_{n,p} = \frac{1}{p} \left(\frac{p-1}{p} \right)^n - \frac{1}{p+1} \left(\frac{p}{p+1} \right)^n$$

Calculer

$$\sum_{p=1}^{\infty} u_{n,p} \,, \, \sum_{n=1}^{\infty} u_{n,p} \,, \, \, \text{puis} \, \, \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} u_{n,p} \, \, \text{et} \, \, \sum_{p=1}^{\infty} \sum_{n=1}^{\infty} u_{n,p}$$

Commentaire?

- (*) Exercice 14 En discutant suivant les valeurs du réel α , étudier la sommabilité de la famille $\left(\frac{1}{(p+n)^{\alpha}}\right)_{p,n\geqslant 1}$.
- (*) Exercice 15 Montrer l'identité : $\sum_{n=1}^{+\infty} \sum_{k=n}^{+\infty} \frac{1}{k^3} = \sum_{k=1}^{+\infty} \frac{1}{k^2}.$
- (*) Exercice 16 On admet que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$
 - 1. Montrer que la famille $(u_{p,q})_{(p,q)\in(\mathbb{N}^*)^2}$ est sommable et calculer sa somme, où $u_{p,q}=\begin{cases} \frac{1}{p^2(q-p)!} & \text{ si } p\leqslant q\\ 0 & \text{ sinon} \end{cases}$
 - 2. Montrer que la famille $\left(\frac{1}{(p+q^2)(p+q^2+1)}\right)_{p\in\mathbb{N},\ q\in\mathbb{N}^*}$ est sommable et calculer sa somme.
- (*) Exercice 17 Calculer $\sum_{n=0}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k!}$.
- (**) Exercice 18 Soient a et b des nombres complexes distincts de module strictement inférieur à 1. Montrer avec un produit de Cauchy que

$$\sum_{n=0}^{+\infty} \frac{a^{n+1} - b^{n+1}}{a - b} = \frac{1}{1 - a} \times \frac{1}{1 - b}$$

- (**) Exercice 19 Pour $n \in \mathbb{N}$, on pose $a_0 = 0 = b_0$ et $a_n = \frac{(-1)^n}{\sqrt{n}} = b_n$ si $n \geqslant 1$.
 - 1. Montrer que les séries $\sum a_n$ et $\sum b_n$ convergent.
 - 2. Montrer la divergence (grossière) de leur série produit de Cauchy.

Banque épreuve orale CCINP: 89.