Entraînement

MP

octobre 2025

Exercice 1

Pour $n \in \mathbb{N}^*$, et $x \in [0,1]$, on pose $f_n(x) = \frac{x^n}{\sqrt{1+x}}$.

- 1. Montrer que la suite (f_n) converge simplement sur [0,1] vers une fonction f que l'on précisera. (5/2 uniquement) La convergence est-elle uniforme?
- 2. Soit $u_n = \int_0^1 f_n(x) dx$.
 - (a) Montrer que $\lim_{n \to +\infty} u_n = 0$.
 - (b) Montrer que $(n+1)u_n = \frac{1}{\sqrt{2}} + \frac{1}{2} \int_0^1 \frac{x^{n+1}}{(\sqrt{1+x})^3} dx$. En déduire un équivalent de u_n .
 - (c) Déterminer α_1 , α_2 , α_3 réels tels que pour entier naturel n,

$$(n+2)(n+1)u_n = \alpha_1(n+2) + \alpha_2 + \alpha_3 \int_0^1 \frac{x^{n+2}}{(\sqrt{1+x})^5} dx$$

En déduire un développement asymptotique de u_n (à expliciter) de la forme :

$$u_n = \frac{\alpha}{n} + \frac{\beta}{n^2} + o(\frac{1}{n^2})$$

3. Soit h une fonction continue sur [0,1]. Montrer que la suite $\left(n\int_{0}^{1}x^{n}h(x)\,\mathrm{d}x\right)$ admet une limite finie et exprimer cette limite en fonction de h.

Exercice 2

Pour tout entier naturel n, on note $e_n : x \in \mathbb{R}^+ \mapsto x^n e^{-x}$.

Soient $N \in \mathbb{N}^*$ et E le sous-espace vectoriel de $C^1(\mathbb{R}^+, \mathbb{R})$ défini par $E = \text{Vect}(e_0, e_1, \dots, e_N)$.

- 1. Montrer que $\mathcal{B} = (e_0, e_1, \dots, e_N)$ est une base de E. En déduire la dimension de E.
- 2. Pour tout élément g de E, on note $\Delta(g) = g'$.
 - (a) Démontrer que $\Delta \in \mathcal{L}(E)$.
 - (b) Écrire la matrice A de Δ dans la base \mathcal{B} . Δ est-il un automorphisme de E?
 - (c) Δ est-il diagonalisable?
- 3. Soient $k \in [0, N]$ et $x \ge 0$. Montrer que la série de terme général $w_n = e_k(x+n)$ est convergente.
- 4. (a) Pour tout entier naturel k, on considère une suite $(u_{n,k})_{n\in\mathbb{N}}$ telle que la série $\sum_{n\geqslant 0}u_{n,k}$ converge. Citer le théorème du cours qui justifie que l'on a (pour tout $N\in\mathbb{N}$)

$$\sum_{n=0}^{+\infty} \left(\sum_{k=0}^{N} u_{n,k} \right) = \sum_{k=0}^{N} \left(\sum_{n=0}^{+\infty} u_{n,k} \right)$$

(b) Soit $f \in E$. Démontrer que la série de terme général $u_n = f(n+x)$ est convergente pour tout $x \ge 0$. On note alors

$$F(x) = \sum_{n=0}^{+\infty} f(n+x)$$

(c) Justifier que la série de terme général $n^j e^{-n}$ pour tout j fixé de \mathbb{N} est convergente. On note alors

$$A_j = \sum_{n=0}^{+\infty} n^j e^{-n}$$

- (d) Exprimer F(x) en fonction des A_i pour tout $x \ge 0$.
- (e) En déduire que $F \in E$ et que l'application $\Phi: f \mapsto F$ ainsi définie est un endomorphisme de E.
- 5. Écrire la matrice de Φ dans la base \mathcal{B} en fonction des A_i .

Exercice 3

Soit $n \in \mathbb{N}^*$, $E = \mathbb{R}_{2n}[X]$ muni de sa base canonique $\mathcal{B} = (1, X, X^2, \dots, X^{2n})$ et a un réel. On considère l'application Φ_a définie sur E par :

$$\forall P \in E, \quad \Phi_a(P) = \left(\frac{1}{4} - X^2\right)P' + aXP$$

- 1. Déterminer toutes les valeurs du réel a pour lesquelles Φ_a est un endomorphisme de E. Désormais a est choisi de sorte que Φ_a est un endomorphisme de E.
- 2. Soit $\lambda \in [-n, n]$. Déterminer α et β dans \mathbb{N} de sorte que le polynôme $P = \left(X + \frac{1}{2}\right)^{\alpha} \left(X \frac{1}{2}\right)^{\beta}$ vérife $\Phi_a(P) = \lambda P$.
- 3. Déterminer alors les éléments propres de l'endomorphisme Φ_a . On donnera pour chaque sous-espace propre une famille de polynômes constituant une base de ce sous-espace.
- 4. Déterminer une matrice B dont le spectre est [0,2n] et dont les coefficients diagonaux sont tous égaux.
- 5. Expliquer comment construire à l'aide Φ_a un endomorphisme Ψ de E admettant $0, 1, 4, 8, \ldots, 4n^2$ comme valeurs propres.

Exercice 4

Soit E un espace vectoriel réel de dimension finie, F un sous-espace de E et G un groupe fini d'automorphismes linéaires de E, de cardinal m, tel que F soit stable par tout élément g de G.

Le produit $u \circ v$ de deux endomorphismes de E sera noté plus simplement uv. À tout endomorphisme u de E, on associe u^+ défini par :

$$u^+ = \frac{1}{m} \sum_{g \in G} g^{-1} ug$$

- 1. Montrer que u^+ est un endomorphisme de E commutant avec tout élément h de G.
- 2. Calculer $(u^+)^+$.
- 3. Calculer la trace de u^+ en fonction de celle de u.
- 4. Soit p un projecteur de E d'image F. Montrer que F est inclus dans l'image de p^+ .
- 5. Montrer que, pour tous g et h de G, on a $g^{-1}pgh^{-1}ph = h^{-1}ph$.
- 6. Montrer que p^+ est un projecteur.
- 7. Comparer les images de p et de p^+ .
- 8. Montrer que le noyau de p^+ est un supplémentaire de F stable par tout élément g de G.
- 9. Montrer que tout sous-espace vectoriel de E stable par tout g de G admet un supplémentaire stable par tout g de G.