Entraînement CCINP (extrait CCINP 2023 PSI)

Soit $(n,p) \in \mathbb{N}^* \times \mathbb{N}^*$. On s'intéresse ici à la convergence des suites matricielles $(M_k)_{k \in \mathbb{N}}$ où pour tout $k \in \mathbb{N}$, $M_k \in \mathcal{M}_{n,p}(\mathbb{C})$ avec p = 1 (matrices colonnes) ou p = n (matrices carrées). Pour tout $k \in \mathbb{N}$, on note $M_k = \left(m_{i,j}^{(k)}\right)_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]}$ ou plus simplement $M_k = \left(m_{i,j}^{(k)}\right)$.

On suppose que l'espace vectoriel $\mathcal{M}_{n,p}(\mathbb{C})$ est muni d'une norme, et on se permet de noter cette norme $\|.\|$ indifféremment des valeurs de n et p. En particulier, si $V \in \mathcal{M}_{n,1}(\mathbb{C})$, V est une matrice colonne assimilée à un vecteur de \mathbb{C}^n et on note $\|V\|$ sa norme.

On rappelle que les trois assertions suivantes sont équivalentes :

- la suite $(M_k)_{k\in\mathbb{N}}$ converge vers la matrice $A=(a_{i,j})\in\mathcal{M}_{n,p}(\mathbb{C})$;
- la suite des normes $(\|M_k A\|)_{k \in \mathbb{N}}$ converge vers 0;
- pour tout $(i,j) \in [1,n] \times [1,p]$, la suite de nombres complexes $(m_{i,j}^{(k)})_{k \in \mathbb{N}}$ converge vers $a_{i,j} \in \mathbb{C}$ (convergence des coefficients de la matrice).

On s'intéresse en particulier à la suite des puissances itérées $\left(M^k\right)_{k\in\mathbb{N}}$ d'une matrice donnée $M\in\mathcal{M}_n(\mathbb{C})$.

Partie I - Limite des puissances d'une matrice

Soit $n \in \mathbb{N}^*$. On considère l'espace vectoriel \mathbb{C}^n muni d'une norme notée $\|.\|$. On note sa base canonique $\mathscr{B} = (e_1, \ldots, e_n)$. Soit u un endomorphisme de \mathbb{C}^n vérifiant la propriété suivante :

$$\forall \lambda \in \mathrm{Sp}(u), \quad |\lambda| < 1$$

où $\operatorname{Sp}(u)$ est l'ensemble des valeurs propres de u. On note A la matrice de l'endomorphisme u dans la base \mathscr{B} . L'objectif de cette partie est de montrer que $\lim_{k\to +\infty} A^k = 0$.

On suppose, sauf à la dernière question de cette partie, que A=T où T est une matrice triangulaire supérieure :

$$T = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & * & \dots & * \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & * \\ 0 & \dots & \dots & 0 & \lambda_n \end{pmatrix}.$$

1. Montrer que $\lim_{k\to +\infty} \|u^k(e_1)\| = 0$ et en déduire $\lim_{k\to +\infty} u^k(e_1)$.

On suppose qu'il existe $i \in [1, n-1]$ tel que pour tout $j \in [1, i]$, $\lim_{k \to +\infty} u^k(e_j) = 0$.

2. Montrer qu'il existe $x \in \text{Vect}\left((e_j)_{j \in \llbracket 1,i \rrbracket}\right)$ tel que :

$$u(e_{i+1}) = \lambda_{i+1}e_{i+1} + x.$$

En déduire que pour tout $k \in \mathbb{N}^*$:

$$u^{k}(e_{i+1}) = \lambda_{i+1}^{k} e_{i+1} + \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^{m}(x).$$

1

- 3. Montrer que $\lim_{k\to +\infty} \left\| \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x) \right\| = 0$. En déduire que $\lim_{k\to +\infty} u^k(e_{i+1}) = 0$.
- 4. Montrer alors que $\lim_{k\to+\infty} T^k = 0$.
- 5. On ne suppose plus que A est triangulaire supérieure. Montrer que $\lim_{k\to +\infty}A^k=0$.

Indications

- 1. $u(e_1)$ se lit dans la matrice T. À partir de là, calculez $u^2(e_1)$, $u^3(e_1)$ et conjecturez.
- 2. Lire la matrice, tout simplement.
 - Récurrence.
- 3. Question difficile, qui peut être passée par les étudiants en difficulté. Montrez pour commencer que $\lim_{k\to +\infty} u^k(x)=0$. Prenez ensuite $\varepsilon>0$ et considérez k_0 tel que pour $k\geqslant k_0, \, \|u^k(x)\|\leqslant \varepsilon$.
- 4. Pas d'indication.
- 5. Pourquoi A est-elle trigonalisable? Utilisez alors une trigonalisation de A (et justifiez bien!).