Devoir des 5/2 – octobre 2025 MP

pour jeudi 9 octobre 2025

La présentation, la lisibilité, l'orthographe, la clarté et la précision des raisonnements entrent pour une part importante dans l'appréciation des copies. Il faut <u>souligner</u> ou <u>encadrer</u> les résultats. Temps conseillé : 4 heures. Bon travail!

- On considère un espace vectoriel E de dimension finie $n \ge 2$ sur le corps \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$). $\mathcal{L}(E)$ désigne la \mathbb{K} -algèbre des endomorphismes de E. Si $(u,v) \in \mathcal{L}(E)^2$, l'endomorphisme composé $u \circ v$ sera tout simplement noté uv; [u,v] désignera l'endomorphisme uv vu et l'identité se notera Id.
- Si u est un endomorphisme de E, on note Tr(u) la trace de u et Sp(u) l'ensemble des valeurs propres de u. \mathcal{T} désigne l'ensemble des endomorphismes de E de trace nulle. Si λ est une valeur propre de u, on notera $E_{\lambda}(u)$ le sous-espace propre de u associé à la valeur propre λ .
- Pour $u \in \mathcal{L}(E)$, on pose $u^0 = \text{Id et si } k \ge 1$, $u^k = uu^{k-1}$. On rappelle qu'un endomorphisme u est dit nilpotent s'il existe $p \in \mathbb{N}^*$ tel que $u^p = 0$ (endomorphisme nul).
- On définit l'application

$$\Phi: \begin{cases} \mathcal{L}(E)^2 & \longrightarrow \mathcal{L}(E) \\ (u,v) & \longmapsto [u,v] \end{cases}$$

et, pour $u \in \mathcal{L}(E)$, l'application

$$\Phi_u : \begin{cases} \mathcal{L}(E) & \longrightarrow \mathcal{L}(E) \\ v & \longmapsto [u, v] \end{cases}$$

— Pour $(m,p) \in \mathbb{N}^2$, on note $M_{m,p}(\mathbb{K})$ l'ensemble des matrices à coefficients dans \mathbb{K} , à m lignes et p colonnes. I_m est la matrice identité d'ordre m. Enfin, $\operatorname{diag}(\alpha_1,\alpha_2,\ldots,\alpha_n)$ désigne la matrice carrée d'ordre n de terme général $\alpha_i\delta_{i,j}$ où $\delta_{i,j}$ est le symbole de Kronecker (on rappelle que $\delta_{i,j}=1$ si i=j et $\delta_{i,j}=0$ si $i\neq j$).

Partie I

I.A Quelques propriétés de Φ_u

- 1. Montrer que \mathcal{T} est un hyperplan de $\mathcal{L}(E)$.
- 2. Montrer que Φ est une application bilinéaire antisymétrique (c'est-à-dire que $\Phi(u,v) = -\Phi(v,u)$).
- 3. Soit $u \in \mathcal{L}(E)$ un endomorphisme qui n'est pas une homothétie. Montrer que $\operatorname{vect}(\operatorname{Id}, u, \dots, u^{n-1})$ est inclus dans ker Φ_u et que $\dim(\ker \Phi_u) \geqslant 2$.
- 4. Soit $u \in \mathcal{L}(E)$. Montrer que si $v \in \ker \Phi_u$ alors $v(E_{\lambda}(u)) \subset E_{\lambda}(u)$ pour tout $\lambda \in \operatorname{Sp}(u)$.
- 5. Montrer que l'image de Φ est incluse dans \mathcal{T} et que, pour $u \in \mathcal{L}(E)$, Im $\Phi_u \subset \mathcal{T}$. Existe-t-il $(u, v) \in \mathcal{L}(E)^2$ tel que $[u, v] = \operatorname{Id} ?$ Peut-on avoir Im $\Phi_u = \mathcal{T} ?$
- 6. Soit $u \in \mathcal{L}(E)$.
 - (a) Montrer que u est une homothétie si et seulement si pour tout $x \in E$, la famille (x, u(x)) est liée.
 - (b) En déduire que ker $\Phi_u = \mathcal{L}(E)$ si et seulement si u est une homothétie.
- 7. (a) Soit $(u, v) \in \mathcal{L}(E)^2$. Montrer par récurrence que pour tout

$$\forall k \in \mathbb{N}, \ \Phi_u^k(v) = \sum_{p=0}^k (-1)^p \binom{k}{p} u^{k-p} v u^p$$

(b) En déduire que si u est nilpotent, alors Φ_u l'est aussi.

I.B Détermination de l'image de Φ

Soit u un endomorphisme non nul de E de trace nulle.

- 8. u peut-il être une homothétie?
- 9. Montrer qu'il existe $e_1 \in E$ tel que la famille $(e_1, u(e_1))$ soit libre.
- 10. En déduire l'existence d'une base (e_1, \ldots, e_n) de E telle que la matrice A de u dans cette base soit de la forme

$$\begin{pmatrix} 0 & X^T \\ Y & A_1 \end{pmatrix}$$

où $(X, Y) \in M_{n-1,1}(\mathbb{K})^2$ et $A_1 \in M_{n-1}(\mathbb{K})$.

- 11. On suppose $A_1 = UV VU$ avec $(U, V) \in M_{n-1}(\mathbb{K})^2$.
 - (a) Montrer que l'on peut trouver $\alpha \in \mathbb{K}$ tel que la matrice $U \alpha I_{n-1}$ soit inversible.

(b) On pose
$$U' = \begin{pmatrix} \alpha & 0 \\ 0 & U \end{pmatrix}$$
 et $V' = \begin{pmatrix} 0 & R^T \\ S & V \end{pmatrix}$ avec $(R, S) \in M_{n-1,1}(\mathbb{K})^2$. Établir l'équivalence

$$A = U'V' - V'U' \Longleftrightarrow \begin{cases} X^T = -R^T(U - \alpha I_{n-1}) \\ Y = (U - \alpha I_{n-1})S \end{cases}$$

12. Montrer alors par récurrence que l'image de Φ est égale à \mathcal{T} .

I.C Détermination de $Tr(\Phi_u)$

Soit u un endomorphisme de E. Soient $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et $A = (a_{i,j})_{1 \leq i,j \leq n}$ la matrice de u dans cette base. Pour $(i,j) \in [1,n]^2$, $u_{i,j}$ désigne l'endomorphisme de E tel que

$$\forall k \in [1, n], \quad u_{i,j}(e_k) = \delta_{j,k}e_i$$

- 13. Rappeler pourquoi $(u_{i,j})_{1 \leq i,j \leq n}$ est une base de $\mathcal{L}(E)$.
- 14. Calculer, pour tout $(i, j, k, \ell) \in [1, n]^4$, le produit $u_{i,j}u_{k,\ell}$ et montrer que l'on a :

$$\forall (i,j) \in [1,n]^2, \quad \Phi_u(u_{i,j}) = \sum_{k=1}^n a_{k,i} u_{k,j} - \sum_{k=1}^n a_{j,k} u_{i,k}$$

15. En déduire $Tr(\Phi_u)$.

Partie II

II.A Cas où u est diagonalisable

Dans cette sous-partie, on suppose que u est diagonalisable. On pose $\mathrm{Sp}(u) = \{\lambda_1, \ldots, \lambda_p\}$. Pour tout $i \in [1, p]$, m_i désigne l'ordre de multiplicité de la valeur propre λ_i de u.

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E formée de vecteurs propres de u. Pour simplifier les notations, on pose $u(e_i) = \mu_i e_i$ pour tout $i \in [1, n]$.

16. (a) Montrer que

$$\forall (i,j) \in [1,n]^2, \quad \Phi_u(u_{i,j}) = (\mu_i - \mu_j)u_{i,j}$$

- (b) En déduire que Φ_u est diagonalisable et préciser $\mathrm{Sp}(\Phi_u)$.
- 17. Montrer que

$$\ker \Phi_u = \{ v \in \mathcal{L}(E) \mid \forall i \in [1, p], \ v(E_{\lambda_i}(u)) \subset E_{\lambda_i}(u) \}$$

- 18. En déduire que ker Φ_u est isomorphe à $\mathcal{L}(E_{\lambda_1}(u)) \times \mathcal{L}(E_{\lambda_2}(u)) \times \cdots \times \mathcal{L}(E_{\lambda_p}(u))$. Quel est le rang de Φ_u ?
- 19. On suppose en plus que u a n valeurs propres distinctes. Quel est la dimension de ker Φ_u ? Quel est le polynôme minimal de u? En déduire que ker $\Phi_u = \text{vect}(\text{Id}, u, \dots, u^{n-1})$.

II.B Cas où $\dim E = 2$

On suppose dans cette sous-partie que $\dim E = 2$. Soit u un endomorphisme de E qui n'est pas une homothétie.

- 20. Montrer que ker $\Phi_u = \text{vect}(\text{Id}, u)$. On pourra utiliser une base de E de la forme (e, u(e)) dont on justifiera l'existence.
- 21. Montrer que le polynôme caractéristique de Φ_u est de la forme $X^2(X^2 + \beta)$ avec $\beta \in \mathbb{K}$.
- 22. Si $\beta = 0$, l'endomorphisme Φ_u est-il diagonalisable?
- 23. On suppose $\beta \neq 0$. Étudier la diagonalisabilité de Φ_u selon que $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.
- 24. On suppose Φ_u diagonalisable.
 - (a) Montrer que $\operatorname{Sp}(\Phi_u) = \{0, \lambda, -\lambda\}$ où λ est un scalaire non nul. Dans la suite de la question, v désigne un vecteur propre de Φ_u associé à la valeur propre λ .
 - (b) L'endomorphisme v peut-il être inversible? Calculer Tr(v) puis v^2 .
 - (c) Détermination de Sp(u).
 - i. Pour quelles valeurs du vecteur e, la famille (e, v(e)) est-elle une base de E?
 - ii. Vérifier que la matrice de u dans une telle base est triangulaire inférieure puis en déduire que

$$\operatorname{Sp}(u) = \left\{ \frac{\operatorname{Tr}(u) - \lambda}{2}, \frac{\operatorname{Tr}(u) + \lambda}{2} \right\}.$$

(d) En déduire que u est diagonalisable.

II.C Cas où Φ_u est diagonalisable

Soit u un endomorphisme de E tel que Φ_u soit diagonalisable et $\operatorname{Sp}(u) \neq \emptyset$. Soit $(v_1, v_2, \dots, v_{n^2})$ une base de $\mathcal{L}(E)$ formée de vecteurs propres de Φ_u de sorte que $\Phi_u(v_i) = \beta_i v_i$ pour tout $i \in [1, n^2]$. Soient enfin $\lambda \in \operatorname{Sp}(u)$ et $x \in E$ un vecteur propre associé.

- 25. Calculer $u(v_i(x))$ en fonction de λ , β_i et $v_i(x)$.
- 26. Montrer que l'application

$$\Psi: \begin{cases} \mathcal{L}(E) & \longrightarrow E \\ v & \longmapsto v(x) \end{cases}$$

est linéaire surjective.

27. Montrer alors que u est diagonalisable.

Partie III

Soient λ une valeur propre non nulle de Φ_u et v un vecteur propre associé. On désigne par P_u le polynôme caractéristique de u.

- 28. (a) Montrer que $\forall x \in \mathbb{K}, v(x \operatorname{Id} u) = ((x + \lambda) \operatorname{Id} u)v$.
 - (b) Qu'en déduit-on sur P_u si $\det(v) \neq 0$?
 - (c) Montrer alors que l'endomorphisme v n'est pas inversible.
 - (d) Montrer que $\forall k \in \mathbb{N}^*$, $\Phi_u(v^k) = k\lambda v^k$. Qu'en déduit-on si $v^p \neq 0$ pour un certain $p \in \mathbb{N}^*$?
 - (e) Conclure que $v^n = 0$.

Dans la suite, on suppose que $v^{n-1} \neq 0$.

- 29. Soit $e \in E$ tel que $v^{n-1}(e) \neq 0$. Montrer que la famille $(e, v(e), \dots, v^{n-1}(e))$ est une base de E et écrire la matrice de l'endomorphisme v dans cette base.
- 30. On pose $\mathcal{A} = \{ w \in \mathcal{L}(E) \mid wv vw = \lambda w \}.$
 - (a) Montrer que \mathcal{A} contient l'endomorphisme w_0 dont la matrice relativement à la base \mathcal{B} est $\operatorname{diag}(0, \lambda, 2\lambda, \dots, (n-1)\lambda)$.
 - (b) Montrer que A est un sous-espace affine de $\mathcal{L}(E)$ dont on précisera la direction.
 - (c) Déterminer la dimension ainsi qu'une base de la direction de A.

- 31. Quelle est alors la forme de la matrice dans la base $\mathcal B$ de l'endomorphisme $u\,?$
- 32. On suppose dans cette question que la matrice de u dans une base \mathcal{B}' de E est de la forme $\operatorname{diag}(\alpha,\alpha+\lambda,\ldots,\alpha+(n-1)\lambda)$. Décrire par leur matrice dans la base \mathcal{B}' les éléments de l'espace $E_{\lambda}(\Phi_u)$. Quelle est sa dimension?