# Devoir maison nº 7

#### MP

pour mardi 21 novembre 2023



La présentation, la lisibilité, l'orthographe, la clarté et la précision des raisonnements entrent pour une part importante dans l'appréciation des copies. Il faut <u>souligner</u> ou <u>encadrer</u> les résultats. Bon travail! Pour ce devoir, il est demandé de faire l'exercice 2 et <u>de choisir</u> un des deux exercices 1.

## Exercice 1 au choix

### exercice de type e3a-CCINP

Soit E un espace vectoriel réel de dimension finie, F un sous-espace de E et G un groupe fini d'automorphismes linéaires de E, de cardinal m, tel que F soit stable par tout élément g de G.

Le produit  $u \circ v$  de deux endomorphismes de E sera noté plus simplement uv. À tout endomorphisme u de E, on associe  $u^+$  défini par :

$$u^+ = \frac{1}{m} \sum_{g \in G} g^{-1} ug$$

- 1. Montrer que  $u^+$  est un endomorphisme de E commutant avec tout élément h de G.
- 2. Calculer  $(u^+)^+$ .
- 3. Calculer la trace de  $u^+$  en fonction de celle de u.
- 4. Soit p un projecteur de E d'image F. Montrer que F est inclus dans l'image de  $p^+$ .
- 5. Montrer que, pour tous g et h de G, on a  $g^{-1}pgh^{-1}ph = h^{-1}ph$ .
- 6. Montrer que  $p^+$  est un projecteur.
- 7. Comparer les images de p et de  $p^+$ .
- 8. Montrer que le noyau de  $p^+$  est un supplémentaire de F stable par tout élément q de G.
- 9. Montrer que tout sous-espace vectoriel de E stable par tout g de G admet un supplémentaire stable par tout g de G.

#### exercice de type Centrale

On dit qu'un anneau A est régulier quand pour tout x appartenant à A, il existe un u appartenant à A tel que xux=x.

- 1. (a) L'anneau  $(\mathbb{Z}, +, \times)$  est-il régulier?
  - (b) Un corps est-il un anneau régulier?
  - (c) Soit E un espace de dimension finie. Montrer que  $(\mathcal{L}(E), +, \circ)$  est un anneau régulier. On pourra pour cela utiliser un supplémentaire du noyau d'un élément de  $\mathcal{L}(E)$ .
- 2. Soit A la matrice ayant ses coefficients  $a_{i,i+1}$  égaux à 1, les autres coefficients étant nuls. Exhiber U telle que AUA = A.
- 3. Montrer que  $(\mathbb{Z}/n\mathbb{Z}, +, \times)$  est un anneau régulier si et seulement s'il n'existe pas d'entier  $a \ge 2$  tel que  $a^2$  divise n. Indications :
  - Pour le sens direct, dans un raisonnement par l'absurde, on considèrera  $\overline{ab}$  où  $b = \frac{n}{a^2}$ .
  - Pour le sens indirect, pour  $x = \overline{a}$ , b produit des diviseurs premiers de n qui sont premiers avec a, on posera  $c = \frac{n}{h} \in \mathbb{N}$  et on montrera que

$$u = \overline{d}$$
 où  $d = a^{\varphi(b)-1}$ 

vérifie xux = x.

## Exercice 2

Dans cet exercice, on désigne par p un nombre entier naturel non nul et par  $\mathbb{R}_p[X]$  l'espace vectoriel des polynômes de degré inférieur ou égal à p, et on identifie polynôme et fonction polynôme.

### 1. Étude d'un endomorphisme $\Phi$ de $\mathbb{R}_p[X]$

On associe à toute fonction polynôme P la fonction  $\widehat{P}$  définie sur  $\mathbb R$  par :

$$\widehat{P}(x) = \frac{1}{x-1} \int_{1}^{x} P(t) dt \quad \text{si } x \neq 1 \qquad \text{et} \qquad \widehat{P}(1) = P(1)$$

- (a) Soit  $P \in \mathbb{R}_p[X]$ . Montrer que la fonction  $F: x \mapsto \int_1^x P(t) dt$  est une fonction polynôme, de degré inférieur ou égal à p+1, admettant 1 pour racine.
- (b) Avec les notations de la question précédente, montrer que F(x) = (x-1)P(1) + o(x-1). Qu'en déduit-on pour la fonction  $\widehat{P}$  en 1?
- (c) Soit  $P \neq 0$ . Montrer que la fonction  $\widehat{P}$  est une fonction polynôme de même degré que P.  $Comme\ \widehat{0} = 0$ , on  $a \deg(\widehat{P}) = \deg(P)$  pour tout  $P \in \mathbb{R}_p[X]$ .
- (d) On considère l'application  $\Phi$  associant à toute fonction polynôme P appartenant à  $\mathbb{R}_p[X]$  la fonction polynôme  $\widehat{P}$  définie ci-dessus. Montrer que  $\Phi$  est un endomorphisme de  $\mathbb{R}_p[X]$ .  $\Phi$  est-il injectif? surjectif?
- (e) Déterminer les images par  $\Phi$  des fonctions polynômes  $e_k: x \mapsto x^k$  pour  $0 \leqslant k \leqslant p$ . En déduire que la matrice M de  $\Phi$  dans la base canonique de  $\mathbb{R}_p[X]$  est :

$$M = \begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 & \dots & 1/(p+1) \\ 0 & 1/2 & 1/3 & 1/4 & & 1/(p+1) \\ 0 & 0 & 1/3 & 1/4 & & \\ \vdots & & 0 & 1/4 & \ddots & \ddots & \vdots \\ \vdots & & & 0 & \ddots & \ddots & 1/(p+1) \\ \vdots & & & & \ddots & 1/(p+1) \\ 0 & 0 & \dots & & 0 & 1/(p+1) \end{pmatrix}$$

(f) Quelles sont les valeurs propres de  $\Phi$ ?  $\Phi$  est-il diagonalisable?

#### 2. Étude des éléments propres de l'endomorphisme $\Phi$

- (a) Déterminer les vecteurs propres de  $\Phi$  associés à la valeur propre 1.
- (b) On considère une valeur propre  $\lambda$  de  $\Phi$  et P fonction polynôme propre associée. Montrer que, pour tout nombre réel  $x: (1-\lambda)P(x) = \lambda(x-1)P'(x)$ . Montrer que si  $\lambda \neq 1$ , 1 est nécessairement racine de P.
- (c) Déterminer les images par  $\Phi$  des fonctions polynômes  $P_k: x \mapsto (x-1)^k$  pour k=0 et pour  $0 < k \le p$ , et montrer que  $(P_0, P_1, \dots, P_p)$  est une base de  $\mathbb{R}_p[X]$ .
- (d) On considère une fonction polynôme P exprimée comme suit dans la base précédente :

2

$$P = a_0 P_0 + a_1 P_1 + \ldots + a_p P_p$$

Montrer que  $a_0 = P(1)$ .

Calculer  $\Phi(P)$ ,  $(\Phi \circ \Phi)(P)$  puis  $\Phi^n(P)$  pour  $n \in \mathbb{N}^*$ .

Déterminer pour tout nombre réel x la limite de  $\Phi^n(P)(x)$  quand n tend vers  $+\infty$  et en déduire en particulier que, si  $P(X) = X^p$ , la limite de  $\Phi^n(P)(x)$  quand n tend vers  $+\infty$  est égale à 1.

#### 3. Application à une marche aléatoire

Un individu se déplace sur les points d'abscisse  $0, 1, 2, \dots p$  selon les règles suivantes :

- il est au point d'abscisse p à l'instant 0;
- s'il est au point d'abscisse k  $(0 \le k \le p)$  à l'instant n  $(n \in \mathbb{N})$ , il est de façon équiprobable en l'un des k+1 points d'abscisses  $0, 1, \ldots, k$  à l'instant n+1.

Pour tout nombre entier naturel n, on désigne par  $X_n$  la variable aléatoire indiquant l'abscisse du point où se trouve l'individu à l'instant n et par  $E(X_n)$ , son espérance.

(a) Écrire un programme Python affichant les positions du mobile jusqu'à l'instant n, les entiers naturels n et p étant au choix de l'utilisateur, enregistrés avec les instructions :

On pourra utiliser la fonction randint de la librairie numpy.random, qui est telle que rd.randint(a,b) renvoie un nombre entier suivant la loi uniforme sur [a, b-1].

- (b) Soit  $k \in [0, p]$ . À l'aide de la formule des probabilités totales, exprimer la probabilité  $P(X_{n+1} = k)$  en fonction des probabilités  $P(X_n = 0), P(X_n = 1), \dots, P(X_n = p)$ .
- (c) En déduire une matrice carrée M telle que  $U_{n+1} = MU_n$  où  $U_n$  désigne la matrice-colonne dont les éléments sont du haut vers le bas  $P(X_n = 0), P(X_n = 1), \ldots, P(X_n = p)$ .
- (d) Exprimer le produit matriciel (0 1 2 ... p) M en fonction de (0 1 2 ... p). En multipliant l'égalité  $U_{n+1} = M.U_n$  à gauche par la matrice-ligne (0 1 2 ... p), exprimer  $E(X_{n+1})$  en fonction de  $E(X_n)$ . Donner alors  $E(X_n)$  en fonction de n ainsi que sa limite quand  $n \to +\infty$ .
- (e) Préciser  $U_0$ , puis donner  $U_n$  en fonction de M et de n. Expliquer pourquoi les p+1 composantes de  $U_n$  ont pour limites (de haut en bas) 1, 0, 0, ..., 0 quand n tend vers  $+\infty$ . Pour les 5/2 uniquement: Interpréter ce résultat.