Devoir maison nº 5 MP

pour jeudi 16 octobre 2025

La présentation, la lisibilité, l'orthographe, la clarté et la précision des raisonnements entrent pour une part importante dans l'appréciation des copies. Il faut <u>souligner</u> ou <u>encadrer</u> les résultats. Bon travail!

Pour ce devoir, il est demandé de rendre un, et un seul, exercice.

Exercice 1 – type e3a

Partie 1

On considère l'ensemble U des suites réelles $u=(u_n)_{n\in\mathbb{N}}$ telles que :

$$\forall n \in \mathbb{N}, \quad u_{n+2} = \frac{u_{n+1}}{2} + \frac{u_n}{2}$$

Il est possible de déterminer U par le cours sur les suites récurrentes linéaires d'ordre 2, mais on s'interdit ici d'utiliser ce résultat de cours.

- 1. Montrer que U est un espace vectoriel sur \mathbb{R} .
- 2. Soient c et d les deux suites appartenant à U telles que $c_0 = 1$, $c_1 = 0$, $d_0 = 0$ et $d_1 = 1$.
 - (a) Montrer que (c, d) est une base de U.
 - (b) Quelle est la dimension de l'espace vectoriel U?
- 3. (a) Montrer qu'il existe deux réels distincts et non nuls ρ et σ que l'on calculera, avec $\rho < 0 < \sigma$, tels que les suites géométriques $(\rho^n)_{n \in \mathbb{N}}$ et $(\sigma^n)_{n \in \mathbb{N}}$ appartiennent à U. On notera r et s les suites telles que $\forall n \in \mathbb{N}$, $r_n = \rho^n$ et $s_n = \sigma^n$.
 - (b) Montrer que (r, s) est une autre base de U.
- 4. (a) Si v est la suite de U telle que $v_0 = x$, $v_1 = y$, donner en fonction de x et y les composantes de v dans la base (r, s).
 - (b) En déduire une formule générale de v_n en fonction de n.

Partie 2

Dans cette partie, E désigne un \mathbb{R} -espace vectoriel de dimension finie n appartenant à \mathbb{N}^* . On note $\mathscr{L}(E)$ l'ensemble des endomorphismes de E et Id_E l'endomorphisme identité de E. On considère f un endomorphisme de E vérifiant la relation $f^2 = \frac{1}{2}(f + \mathrm{Id}_E)$.

- 1. Prouver que l'endomorphisme f est inversible (= bijectif) et exprimer son inverse f^{-1} en fonction de Id_E et de f.
- 2. Justifier que $\ker(f \operatorname{Id}_E)$ et $\ker(f + \frac{1}{2}\operatorname{Id}_E)$ sont des sous-espaces vectoriels de E.
- 3. Montrer que : $E = \ker(f \operatorname{Id}_E) \oplus \ker(f + \frac{1}{2}\operatorname{Id}_E)$.

- 4. Calculer $(f + \frac{1}{2}\operatorname{Id}_E) \circ (f \operatorname{Id}_E)$. En déduire que $\ker(f + \frac{1}{2}\operatorname{Id}_E) = \operatorname{Im}(f \operatorname{Id}_E)$.
- 5. Exprimer f^3 et f^4 comme combinaisons linéaires de f et Id_E .
- 6. Établir par récurrence que pour tout entier naturel n, il existe un couple (a_n, b_n) de réels tel que : $f^n = a_n f + b_n \operatorname{Id}_E$. Déterminer a_0, b_0, a_1 et b_1 . Exprimer a_{n+1} et b_{n+1} en fonction de a_n et b_n pour n dans \mathbb{N} .
- 7. Montrer que pour tout n appartenant à \mathbb{N} , $a_{n+2} = \frac{a_{n+1}}{2} + \frac{a_n}{2}$. En déduire les expressions de a_n et b_n en fonction de n pour n élément de \mathbb{N} .
- 8. Calculer les limites des suites (a_n) et (b_n) .

Exercice 2 – type CCINP

Notations:

n est un entier naturel fixé, $n \ge 2$.

 \mathcal{F} est l'espace vectoriel des fonctions réelles définies sur \mathbb{R} .

E est le sous-espace vectoriel des fonctions polynômes à coefficients réels.

 E_n est le sous-espace vectoriel des fonctions polynômes à coefficients réels, de degré inférieur ou égal à n.

Partie I

Si $f \in \mathcal{F}$, on note $\Delta(f)$ et T(f) les fonctions réelles définies par :

$$\forall x \in \mathbb{R} : \Delta(f)(x) = f(x+1) - f(x)$$

$$\forall x \in \mathbb{R} : T(f)(x) = f(x+1)$$

On admettra que Δ et T sont des endomorphismes de \mathcal{F} .

On note $\Delta^0 = T^0 = \operatorname{Id}_{\mathcal{F}} (\operatorname{donc}, \operatorname{si} f \in \mathcal{F}, \Delta^0(f) = T^0(f) = f), \text{ et, si } j \in \mathbb{N}, j \geqslant 1,$

$$\Delta^j = \Delta^{j-1} \circ \Delta = \Delta \circ \Delta^{j-1}, \quad T^j = T^{j-1} \circ T = T \circ T^{j-1}$$

- 1. (a) i. Soit $P \in E$, non constant. $\Delta(P)$ est une fonction polynôme. Comparer les degrés de $\Delta(P)$ et de P. Calculer le coefficient dominant de $\Delta(P)$ en fonction de celui de P.
 - ii. Vérifier que Δ induit un endomorphisme de E_n , noté Δ_n .

$$\Delta_n: \left(\begin{array}{ccc} E_n & \longrightarrow & E_n \\ x & \longmapsto & \Delta(x) \end{array}\right)$$

- (b) i. Déterminer $\ker \Delta_n$.
 - ii. En déduire le rang de Δ_n .
- 2. Pour $k \in \mathbb{N}$, on définit les fonctions polynômes N_k par :

$$\forall x \in \mathbb{R}, \quad N_0(x) = 1 \quad \text{et} \quad N_k(x) = \frac{x(x-1)\cdots(x-k+1)}{k!}$$

- (a) i. Pour $k \ge 1$, exprimer $\Delta(N_k)$ en fonction des polynômes $(N_i)_{i \ge 0}$.
 - ii. Calculer, pour $j \in \mathbb{N}$ et $k \in \mathbb{N}$, $\Delta^{j}(N_{k})$, puis $(\Delta^{j}(N_{k}))$ (0).
- (b) i. Montrer que la famille (N_0, N_1, \dots, N_n) est une base de E_n .
 - ii. Soit $P \in E_n$. P s'écrit $P = a_0 N_0 + a_1 N_1 + \dots + a_n N_n$ où $(a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$. Exprimer les a_i en fonction des $(\Delta^j(P))(0)$.

- 3. (a) Soient $k \in \mathbb{N}$ et $f \in \mathcal{F}$. Déterminer pour $x \in \mathbb{R}$, $\left(T^k(f)\right)(x)$.
 - (b) Soit $j \in \mathbb{N}$. Soit $f \in \mathcal{F}$.
 - i. Expliciter $\Delta^j(f)$ en fonction des $T^k(f),\ 0\leqslant k\leqslant j.$ (On pourra remarquer que $\Delta=T-\mathrm{Id}_{\mathcal{F}}$).
 - ii. En déduire que $(\Delta^j(f))$ (0) ne dépend que des valeurs de f aux points $0, 1, \ldots, j$: $f(0), f(1), \ldots, f(j)$.

Partie II

On se donne une fonction f de \mathcal{F} . On cherche les polynômes solutions du problème (\mathcal{P}) suivant :

$$(\mathcal{P}) \quad \left\{ \begin{array}{l} \deg P \leqslant n \\ \forall k \in \{0, 1, \dots, n\}, \ P(k) = f(k) \end{array} \right.$$

On pose $N(x) = \prod_{j=0}^{n} (x-j) = x(x-1) \dots (x-n)$.

- 1. (a) Soit l'application linéaire $\Phi: \begin{array}{ccc} E_n & \to & \mathbb{R}^{n+1} \\ P & \mapsto & (P(0), \dots, P(n)) \end{array}$ Montrer que Φ est un isomorphisme.
 - (b) En déduire que le problème (\mathcal{P}) possède une unique solution notée P_f .
- 2. (a) Pour $j \in \{0, 1, ..., n\}$, comparer $(\Delta^{j}(f))(0)$ et $(\Delta^{j}(P_{f}))(0)$.
 - (b) En déduire l'expression de P_f en fonction des $(\Delta^j(f))$ (0) et des polynômes N_i .
- 3. Dans cette question, on suppose que f est de classe C^{n+1} . On note $M_n = \sup \left\{ \left| f^{(n+1)}(t) \right|, \quad t \in [0, n] \right\}$.
 - (a) Soit $x \in [0, n]$, non entier. Montrer que :

$$\exists c \in]0, n[/ f(x) - P_f(x) = \frac{f^{(n+1)}(c)}{(n+1)!} N(x)$$

On pourra poser $\varphi(t) = f(t) - P_f(t) - KN(t)$, où K est tel que $\varphi(x) = 0$, et appliquer judicieusement le théorème de Rolle.

(b) En déduire :

$$\forall x \in [0, n], \quad |f(x) - P_f(x)| \leqslant \frac{1}{n+1} M_n$$

Pour cela, on pourra majorer |N(x)| sur chaque intervalle [j, j+1], où $j \in \{0, 1, \dots, n-1\}$.