Devoir maison $n^o 4$ MP

pour jeudi 9 octobre 2025

La présentation, la lisibilité, l'orthographe, la clarté et la précision des raisonnements entrent pour une part importante dans l'appréciation des copies. Il faut <u>souligner</u> ou <u>encadrer</u> les résultats. Bon travail!

🗷 : proche du cours, méthode à connaître, exercice de structure classique... Les exercices 🗷 sont OBLIGATOIRES.

Exercice 1 – 🗷

On note $\mathcal{M}_2(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 2 à coefficients réels. On note θ la matrice nulle, et I la matrice identité.

Partie A

A est une matrice fixée de $\mathcal{M}_2(\mathbb{R})$, différente de I et θ , on considère f de $\mathcal{M}_2(\mathbb{R})$ vers lui-même définie par

$$f: M \mapsto f(M) = M \times A - A \times M$$

- 1. Quelle est la dimension de $\mathcal{M}_2(\mathbb{R})$? (on ne demande pas de justifier la réponse).
- 2. Montrer que f est un endomorphisme de l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$.
- 3. Soit $K = \{M \in \mathcal{M}_2(\mathbb{R}) \mid A \times M = M \times A\}$. Montrer que K est un sous-espace vectoriel de $(\mathcal{M}_2(\mathbb{R}), +, \times)$.
- 4. Montrer que I et A appartiennent à ker f.
- 5. Montrer que ker f est stable pour la multiplication des matrices, c'est-à-dire : $M \in \ker f$ et $N \in \ker f \Rightarrow M \times N \in \ker f$.

Partie B

On pose maintenant $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ et $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice quelconque de $\mathcal{M}_2(\mathbb{R})$.

- 1. Calculer f(M).
- 2. (a) Montrer par le calcul que ker f est le sous-espace vectoriel engendré par I et A.
 - (b) Trouver une base de ker f et préciser la dimension de ker f ainsi que le rang de f.
- 3. Déterminer A^n pour tout $n \in \mathbb{N}^*$.
- 4. Soit N = x.I + y.A un élément de ker f, déterminer N^n pour tout $n \in \mathbb{N}^*$.
- 5. Résoudre dans $\ker f$ l'équation : $N^2 = I$.

Exercice 2 – 🐔

Soit E l'ensemble des suites réelles convergentes. $E = \{(u_n)_{n \in \mathbb{R}^N} / (u_n) \text{ converge}\}$. Montrer que l'ensemble des suites constantes et l'ensemble des suites convergeant vers 0 sont des sous-espaces supplémentaires dans E.

Exercice 3 – 🐔

On définit par récurrence deux suites (P_n) et (Q_n) de polynômes par $P_1=X,\,Q_1=1$ et, pour tout $n\in\mathbb{N}^*,\,P_{n+1}=P_n+XQ_n$ et $Q_{n+1}=Q_n-XP_n$.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $Q_n + iP_n = (1 + iX)^n$.
- 2. Donner une expression simple de $P_n(\tan \theta)$ et de $Q_n(\tan \theta)$.
- 3. Factoriser (P_n) et (Q_n) dans $\mathbb{R}[X]$.