Devoir maison $n^{o} 3$ MP

pour jeudi 2 octobre 2025

La présentation, la lisibilité, l'orthographe, la clarté et la précision des raisonnements entrent pour une part importante dans l'appréciation des copies. Il faut <u>souligner</u> ou <u>encadrer</u> les résultats. Bon travail!

Pour ce devoir, il est demandé de rendre un, et un seul, des deux exercices.

Exercice 1 – type e3a

Soit $\alpha \in]0,1[$.

On se propose d'étudier la série de terme général $a_n = \frac{\sin(n^{\alpha})}{n}, n \geqslant 1.$

- 1. On pose pour tout $t \geqslant 1$, $\varphi(t) = \frac{\sin(t^{\alpha})}{t}$.
 - (a) Justifier que la fonction $t \mapsto \sin(t^{\alpha})$ est dérivable sur $[1, +\infty[$ et déterminer sa dérivée.
 - (b) Justifier que φ est dérivable sur $[1, +\infty[$ et déterminer φ' .
 - (c) Montrer que l'on a : $\forall t \in [1, +\infty[, |\varphi'(t)| \leq \frac{1 + \alpha t^{\alpha}}{t^2}]$.
 - (d) En déduire que pour tout entier $n \ge 1$:

$$\forall t \in [n, n+1], |\varphi(t) - \varphi(n)| \leq \left(\frac{1}{n^2} + \frac{\alpha}{n^{2-\alpha}}\right) |t-n|.$$

2. On pose, pour tout $n \ge 1$: $u_n = \int_n^{n+1} \varphi(t) dt$.

Prouver que l'on a : $\forall n \geqslant 1, |u_n - a_n| \leqslant \frac{1}{n^2} + \frac{\alpha}{n^{2-\alpha}}$.

- 3. Convergence de l'intégrale $\int_{1}^{+\infty} \frac{\sin(t)}{t} dt$
 - (a) Démontrer que $t\mapsto \frac{\cos(t)}{t^2}$ est intégrable sur $[1,+\infty[$.
 - (b) À l'aide d'une intégration par parties, démontrer alors que $\int\limits_1^{+\infty} \frac{\sin(t)}{t} \, dt$ converge.
- 4. Démontrer, à l'aide d'un changement de variable, que l'intégrale $\int_{1}^{+\infty} \frac{\sin(t^{\alpha})}{t} dt$ converge.
- 5. En déduire que la série de terme général u_n converge.
- 6. Prouver que la série de terme général $u_n a_n$ converge absolument.
- 7. Déduire des questions précédentes que la série $\sum_{n\geqslant 1}a_n$ converge.

- 8. On suppose que la série $\sum_{n>1} |a_n|$ est convergente.
 - (a) Montrer qu'alors la série $\sum_{n\geq 1} \frac{\sin^2(n^{\alpha})}{n}$ est convergente.
 - (b) Prouver que l'intégrale $\int_{1}^{+\infty} \frac{\cos(2x)}{x} dx$ converge. On procédera comme à la question 3b.
 - (c) On admet alors, en procédant comme précédemment, que la série $\sum_{n\geqslant 1} \frac{\cos(2n^{\alpha})}{n}$ est convergente. Conclure sur la nature de la série $\sum_{n\geqslant 1} a_n$.

 On pourra utiliser la formule de duplication : $\cos(2\theta) = 1 2\sin^2(\theta)$.

Exercice 2 – type CCINP

Dans cet exercice, on désigne par f une fonction continue de \mathbb{R}_+ à valeurs dans \mathbb{C} , et on étudie en fonction de diverses hypothèses l'intégrale suivante pour tout réel x > 0, si elle existe :

$$F(x) = \int_{0}^{+\infty} \frac{f(xt) - f(t)}{t} dt.$$

Partie I : étude de F(x) lorsque f a une limite finie L en $+\infty$

Dans toute cette partie, on suppose que la fonction continue f admet une limite finie L en $+\infty$.

1. Étude d'un cas particulier.

Dans cette question, on donne deux réels p et q et on suppose que la fonction f est définie par :

$$\forall t \geqslant 0, \quad f(t) = \frac{pt^2 + q}{t^2 + 1}.$$

(a) Établir, pour x > 0, qu'il existe des réels a_x et b_x , qu'on exprimera en fonction de x, tels que :

$$\forall t > 0, \quad \frac{f(xt) - f(t)}{t} = (p - q) \left(\frac{a_x t}{x^2 t^2 + 1} - \frac{b_x t}{t^2 + 1} \right).$$

- (b) Calculer pour tout réel $A \ge 0$ l'intégrale $\int_0^A \frac{f(xt) f(t)}{t} dt$, et en déduire F(x).
- (c) Exprimer $L = \lim_{t \to +\infty} f(t)$ et f(0) à l'aide de p et q, puis F(x) en fonction de f(0), L et x > 0.
- 2. Étude de F(x) pour x > 0 lorsque f admet une limite finie L en $+\infty$.

On rappelle que, dans cette partie, la fonction continue f admet une limite finie L en $+\infty$.

(a) Démontrer les égalités suivantes pour $0 < \varepsilon < A$:

$$\int_{\varepsilon}^{A} \frac{f(xt) - f(t)}{t} dt = \int_{\varepsilon x}^{Ax} \frac{f(u)}{u} du - \int_{\varepsilon}^{A} \frac{f(u)}{u} du = \int_{A}^{Ax} \frac{f(u)}{u} du - \int_{\varepsilon}^{\varepsilon x} \frac{f(u)}{u} du.$$

(b) En effectuant un changement de variables dans ces deux dernières intégrales, en déduire que :

$$\int_{a}^{A} \frac{f(xt) - f(t)}{t} dt = \int_{a}^{x} \frac{f(At)}{t} dt - \int_{a}^{x} \frac{f(\varepsilon t)}{t} dt.$$

- (c) Établir qu'une fonction continue $f: \mathbb{R}_+ \to \mathbb{C}$ ayant une limite finie L en $+\infty$ est bornée sur \mathbb{R}_+ .
- (d) On **admet** que $\lim_{A\to +\infty} \int_{1}^{x} \frac{f(At)}{t} dt = L \ln(x)$ et que $\lim_{\varepsilon\to 0} \int_{1}^{x} \frac{f(\varepsilon t)}{t} dt = f(0) \ln(x)$ (il n'y a donc pas de question).
- (e) En déduire l'existence et la valeur de F(x) pour tout réel strictement positif x. Comparer le résultat ainsi obtenu au résultat particulier obtenu à la question 1.
- 3. Application aux cas où $f(t) = \arctan(t)$ et $f(t) = e^{-t}$.
 - (a) Déterminer l'existence de la valeur de F(x) lorsque : $\forall t \in \mathbb{R}_+, f(t) = \arctan(t)$.

 Que vaut l'intégrale $I(a,b) = \int\limits_0^{+\infty} \frac{\arctan(at) \arctan(bt)}{t} \mathrm{d}t$ où a et b sont strictement positifs?
 - (b) Déterminer l'existence et la valeur de F(x) lorsque : $\forall t \in \mathbb{R}_+, f(t) = e^{-t}$.

Partie II : étude de F(x) lorsque l'intégrale $I=\int\limits_{1}^{+\infty} \frac{f(t)}{t}\mathrm{d}t$ converge.

Dans toute cette partie, on suppose que l'intégrale impropre $I = \int_{1}^{+\infty} \frac{f(t)}{t} dt$ converge.

4. Étude du cas particulier où l'intégrale impropre $J=\int\limits_0^{+\infty}\frac{f(t)}{t}\mathrm{d}t$ converge.

On suppose plus spécifiquement dans cette question que l'intégrale $J = \int_0^{+\infty} \frac{f(t)}{t} dt$ converge.

- (a) À l'aide d'un changement de variable, déterminer la nature et la valeur de $\int_{0}^{+\infty} \frac{f(xt)}{t} dt$.
- (b) En déduire la convergence et la valeur de F(x) pour tout réel strictement positif x.
- 5. Application au cas où $f(t) = \sin(t)$.
 - (a) Démontrer la relation suivante pour $0 < \varepsilon < A$:

$$\int_{\varepsilon}^{A} \frac{\sin(t)}{t} dt = \left[\frac{1 - \cos(t)}{t} \right]_{\varepsilon}^{A} + \int_{\varepsilon}^{A} \frac{1 - \cos(t)}{t^{2}} dt.$$

- (b) Déterminer la limite de $\frac{1-\cos(t)}{t}$ lorsque t tend vers 0, puis vers $+\infty$.
- (c) Déterminer la limite de $\frac{1-\cos(t)}{t^2}$ lorsque t tend vers 0, puis justifier la convergence de l'intégrale $\int\limits_0^{+\infty} \frac{1-\cos(t)}{t^2} dt$, et enfin la convergence de l'intégrale $\int\limits_0^{+\infty} \frac{\sin(t)}{t} dt$.
- (d) En déduire l'existence et la valeur de F(x) lorsque : $\forall t \in \mathbb{R}_+, f(t) = \sin(t)$.
- 6. Étude de F(x) pour x>0 lorsque l'intégrale impropre $I=\int\limits_1^{+\infty}\frac{f(t)}{t}\mathrm{d}t$ converge.

On rappelle que, dans cette partie, l'intégrale $I=\int\limits_{1}^{+\infty}\frac{f(t)}{t}\mathrm{d}t$ converge.

(a) En raisonnant comme à la question 2, démontrer l'égalité suivante pour $0 < \varepsilon < A$:

$$\int_{\varepsilon}^{A} \frac{f(xt) - f(t)}{t} dt = \int_{A}^{Ax} \frac{f(t)}{t} dt - \int_{1}^{x} \frac{f(\varepsilon t)}{t} dt.$$

- (b) Déterminer la limite de $\int_A^{Ax} \frac{f(u)}{u} du$ lorsque A tend vers $+\infty$.
- (c) On **admet** que $\lim_{\varepsilon \to 0} \int_{1}^{x} \frac{f(\varepsilon t)}{t} dt = f(0)$ (il n'y a donc pas de question).
- (d) En déduire l'existence et la valeur de F(x) pour tout réel strictement positif x.
- 7. Application aux cas où $f(t) = e^{it}$ et $f(t) = \cos(t)$.
 - (a) Démontrer la relation suivante pour A>1 :

$$\int_{1}^{A} \frac{e^{it}}{t} dt = \left[\frac{e^{it}}{it} \right]_{1}^{A} - i \int_{1}^{A} \frac{e^{it}}{t^{2}} dt.$$

- (b) En déduire, en la justifiant soigneusement, la convergence de l'intégrale $\int_{1}^{+\infty} \frac{e^{it}}{t} dt$.
- (c) En déduire l'existence et la valeur de F(x) lorsque : $\forall t \in \mathbb{R}_+, f(t) = e^{it}$, puis lorsque : $\forall t \in \mathbb{R}_+, f(t) = \cos(t)$.