Devoir maison n^{o} 3 MP

pour mardi 1^{er} octobre 2024

La présentation, la lisibilité, l'orthographe, la clarté et la précision des raisonnements entrent pour une part importante dans l'appréciation des copies. Il faut <u>souligner</u> ou <u>encadrer</u> les résultats. Bon travail!

\land : proche du cours, méthode à connaître, exercice de structure classique... Les exercices \land sont OBLIGATOIRES.

I Questions de cours et exemples – 🗷

Soit E un \mathbb{R} -espace vectoriel de dimension finie et f un endomorphisme de E.

- 1. Donner la définition d'un polynôme annulateur de f.
- 2. (5/2 uniquement) Quelle est la structure de l'ensemble des polynômes annulateurs de f?
- 3. Donner la définition du polynôme minimal de f, que l'on notera π_f .
- 4. Un premier exemple.

Soit f l'endomorphisme de \mathbb{R}^4 de représentation matricielle dans la base canonique :

$$M = (m_{i,j})$$
 où $m_{i,j} = \frac{1}{4}(1 + (-1)^{i+j})$ pour $(i,j) \in [1,4]^2$

Calculer M^k pour $k \in \mathbb{N}^*$ et déterminer π_f .

- 5. # Un second exemple.
 - (a) Chercher les solutions à valeurs réelles des équations différentielles :

$$y'' + y = \operatorname{ch}(x)$$
 et $y'' + y = \operatorname{sh}(x)$

(b) On considère l'équation différentielle $(H_1): y^{(4)} = y$. Soit f une fonction de classe \mathcal{C}^4 sur \mathbb{R}

Démontrer que f est solution de (H_1) si, et seulement si, la fonction g = f'' + f est solution d'une équation différentielle du second ordre (H_2) que l'on déterminera.

- (c) Résoudre (H_2) et en déduire les solutions de (H_1) .
- (d) On note alors E le sous-espace vectoriel du \mathbb{R} -espace vectoriel des applications de classe \mathcal{C}^{∞} sur \mathbb{R} à valeurs réelles engendré par (cos, sin, ch, sh).
 - i. Quelle est la dimension de E?
 - ii. Justifier que la dérivation induit sur E un endomorphisme δ .
 - iii. Déterminer le polynôme minimal π_{δ} de δ .

Dans toute la suite, $E = \mathbb{R}[X]$ et pour $n \in \mathbb{N}^*$, $E_n = \mathbb{R}_n[X]$. Lorsque f est un endomorphisme de E_n , on note χ_f son polynôme caractéristique.

Soit $u: P \in E \mapsto P'$ et $v: P \in E \mapsto P(X+1)$.

II Quelques propriétés des endomorphismes u et v – \not

- 6. Rappeler la dimension de E_n et en donner une base usuelle.
- 7. Montrer que u et v sont des endomorphismes de E qui laissent stables E_n . On note u_n et v_n les endomorphismes de E_n induits par u et v.
- 8. Écrire les matrices U_n et V_n de u_n et v_n dans la base canonique de E_n .
- 9. Préciser le noyau et l'image de chacun de ces endomorphismes.
- 10. Les endomorphismes u_n et v_n commutent-ils?
- 11. Quel est le polynôme caractéristique de u_n ? u_n est-il diagonalisable ?
- 12. Quel est le polynôme caractéristique de v_n ? v_n est-il diagonalisable?
- 13. On note $w_n = v_n \mathrm{Id}_{E_n}$ et on pose :

$$Q_0 = 1$$
 et pour tout $k \in [1, n]$, $Q_k = \frac{1}{k!} \prod_{j=0}^{k-1} (X - j)$

- (a) Vérifier que la famille $\mathcal{B} = (Q_k)_{0 \leq k \leq n}$ est une base de E_n .
- (b) Déterminer $w_n(Q_0)$. Montrer que pour tout $k \in \mathbb{N}^*$, il existe un réel α_k non nul tel que

$$w_n(Q_k) = \alpha_k Q_{k-1}$$

- (c) Écrire la matrice W_n de w_n dans la base \mathcal{B} .
- (d) Donner une base de $ker(w_n)$ et une base de $Im(w_n)$.
- (e) Calculer $w_n^j(Q_k)$ pour $j \in \mathbb{N}$ et $k \in [0, n]$.
- 14. Détermination des coordonnées d'un polynôme de E_n dans la base \mathcal{B} .
 - (a) Soit $P \in E_n$. Justifier l'existence et l'unicité d'une famille de scalaires $(\beta_k)_{0 \le k \le n}$ telle que $P = \sum_{k=0}^{n} \beta_k Q_k$.
 - (b) Calculer $w_n^j(P)(0)$ pour $j \in \mathbb{N}$.
 - (c) Exprimer alors les coordonnées de P dans la base \mathcal{B} .
 - (d) Calculer w_n^{n+1} et $w_n^n(Q_n)$.

III Recherche de quelques polynômes minimaux – 🗷

- 15. Soit $f \in \mathcal{L}(E_n)$. Justifier que π_f divise χ_f .
- 16. Recherche de π_{u_n} .
 - (a) Déterminer u_n^{n+1} . Calculer $u_n^n(X^n)$. Conclure.
 - (b) De même, déterminer le polynôme minimal de w_n .
- 17. Recherche de π_{v_n} .
 - (a) Montrer qu'il existe $m \in [1, n+1]$ tel que $\pi_{v_n} = (X-1)^m$.
 - (b) Prouver que m = n + 1.
- 18. \mathcal{I} Polynômes annulateurs de u.

Soit P un polynôme de degré m écrit $P = \sum_{j=0}^{m} a_j X^j$.

- (a) Que sait-on de a_m ?
- (b) On note r l'endomorphisme P(u). Déterminer $r(\frac{X^m}{m!})$.
- (c) Déterminer l'ensemble des polynômes annulateurs de u.
- 19. ${\mathcal I}$ Polynômes annulateurs de v. Soit P un polynôme annulateur de v.
 - (a) Montrer que : $\forall n \in \mathbb{N}^*$, $(X-1)^{n+1}$ divise P.

- (b) Déterminer l'ensemble des polynômes annulateurs de v.
- 20. \mathcal{I} Soit s l'endomorphisme qui à tout polynôme P associe le polynôme P(1-X).
 - (a) Vérifier que s est une symétrie de E.
 - (b) Déterminer l'ensemble des polynômes annulateurs de s.

IV - I

Soit f un endomorphisme de l'esapce vectoriel normé E. On rappelle que :

$$\exp(f) = \sum_{m=0}^{+\infty} \frac{f^m}{m!}$$

- 21. Montrer que $v_n = \exp(u_n)$.
- 22. On va montrer dans cette question que $u_n = \sum_{m=1}^{+\infty} \frac{(-1)^{m+1}}{m} (v_n \mathrm{Id}_{E_n})^m$.
 - (a) Prouver (en utilisant la question 14.c) que

$$\forall k \in [0, n], \ u_n(Q_k) = \sum_{m=0}^k u_n(Q_m)(0)Q_{k-m}$$

- (b) Calculer $u_n(Q_m)(0)$ pour $m \in [0, n]$.
- (c) Conclure.