Quelques révisions de MPSI

1 Décomposition en éléments simples

EXEMPLE On considère $F(x) = \frac{P(x)}{(x-\alpha)(x-\beta)^3(x^2+x+1)^2}$ dans $\mathbb{R}(X)$. Il existe a,b,c,d,e,f,g,h réels et Q polynôme tels que :

$$F(x) = Q(x) + \frac{a}{x - \alpha} + \frac{b}{x - \beta} + \frac{c}{(x - \beta)^2} + \frac{d}{(x - \beta)^3} + \frac{ex + f}{x^2 + x + 1} + \frac{gx + h}{(x^2 + x + 1)^2}$$

- 1. Q: quotient de la division euclidienne du numérateur de F par son dénominateur. C'est la partie entière de F.
- 2. a: on multiplie F par $x \alpha$ puis on évalue en $x = \alpha$.
- 3. d: on multiplie F par $(x \beta)^3$ puis on évalue en $x = \beta$.
- 4. c: on retranche $\frac{d}{(x-\beta)^3}$ de F, on simplifie la fraction obtenue par $x-\beta$, on multiplie par $(x-\beta)^2$ puis on évalue en $x=\beta$.
- 5. b: on retranche $\frac{c}{(x-\beta)^2}$ de F, on simplifie la fraction obtenue par $x-\beta$, on multiplie par $x-\beta$ puis on évalue en $x=\beta$.
- 6. g, h: on multiplie F par $(x^2+x+1)^2$ puis on évalue en x=j (racine de x^2+x+1). On trouve gj+h, d'où g et h.
- 7. e, f: on retranche $\frac{gx+h}{(x^2+x+1)^2}$ de F, on simplifie la fraction obtenue par x^2+x+1 , on multiplie par x^2+x+1 puis on pose x=j. On trouve ej+f, d'où e et f.

D'autres relations peuvent aussi être utilisées, par exemple :

- On multiplie par x^k puis on fait tendre x vers $+\infty$.
- On prend des valeurs particulières de x.
- Utiliser des arguments de parité.

Entraînement : cahier de calcul.

2 Quelques théorèmes d'analyse réelle

Théorème 1 – théorème de Rolle

Soient a et b dans \mathbb{R} avec a < b. Soit f une fonction continue sur [a, b], dérivable sur [a, b], derivable su

Il existe $c \in]a, b[$ tel que f'(c) = 0.

Ce théorème se généralise en l'égalité des accroissements finis : si f est continue sur [a,b] et dérivable sur [a,b[, alors il existe $c \in]a,b[$ tel que $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Théorème 2 – théorème de la bijection

Toute fonction réelle strictement monotone et continue sur l'intervalle I, admet une fonction réciproque de même monotonie, définie et continue sur l'intervalle f(I).

- Par exemple, si f est une fonction continue et strictement décroissante sur $[0, +\infty[$, alors :
 - f est bijective de $I = [0, +\infty[$ dans f(I) =
 - $-f^{-1}$ est
 - $--f^{-1}$ est
- Au programme, figure aussi la propriété : si g est une fonction continue sur un intervalle et injective, alors g est strictement monotone.

Théorème 3 – Théorème de dérivation d'une fonction réciproque

Soit f une fonction continue et strictement monotone sur l'intervalle I, bijective de I dans J. Soit $y \in J$. On suppose que f est dérivable en $a = f^{-1}(y)$.

 f^{-1} est dérivable en y si, et seulement si, $f'(a) \neq 0$.

Lorsque $f'(a) \neq 0$, on a :

$$(f^{-1})'(y) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(y))}$$

Je vous laisse réviser les fonctions circulaires réciproques au programme : arcsin, arccos, arctan.

Théorème 4 – Théorème de la limite de la dérivée

• Soit f une fonction définie sur un intervalle I et $a \in I$. On suppose que f est continue sur I, dérivable sur $I \setminus \{a\}$ et que

$$\lim_{x \to a} f'(x) = \ell \in \mathbb{R}$$

Alors f est dérivable en a et $f'(a) = \ell$.

On remarque que f' est continue en a.

• On suppose que f est continue sur I, dérivable sur $I\setminus\{a\}$ et que $\lim_{x\to a}f'(x)=\pm\infty$. Alors

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \pm \infty$$

Autrement dit, le graphe de f admet une demi-tangente verticale en a, et la fonction f n'est pas dérivable en a.

Variante utile

Soit $a \in I$. Soit f une fonction continue sur I et de classe C^1 sur $I \setminus \{a\}$.

On suppose que f' admet une limite finie ℓ en a.

Alors f est de classe C^1 sur I entier et $f'(a) = \ell$.

3 Convexité

• f est convexe sur I si $\forall (a,b) \in I^2, \forall t \in [0,1],$

$$f(ta + (1-t)b) \leq tf(a) + (1-t)f(b)$$

f est concave sur I si -f est convexe sur I. Un point d'inflexion de f est un point en lequel f change de convexité.

- f est convexe si, et seulement si, la courbe représentative de f est en-dessous de ses cordes.
- Inégalité de Jensen

Soient f une fonction convexe sur un intervalle I et $n \in \mathbb{N}^*$.

Pour tout $(t_1, t_2, \dots, t_n) \in (\mathbb{R}^+)^n$ tel que $\sum_{i=1}^n t_i = 1$ et tout $(x_1, x_2, \dots, x_n) \in I^n$, on a :

$$f\left(\sum_{i=1}^{n} t_i x_i\right) \leqslant \sum_{i=1}^{n} t_i f(x_i)$$

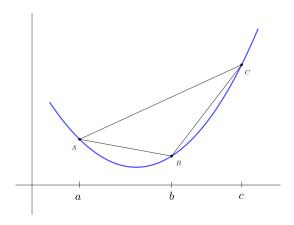
soit encore $f(t_1x_1 + t_2x_2 + \dots + t_nx_n) \le t_1f(x_1) + t_2f(x_2) + \dots + t_nf(x_n)$

• Inégalité des pentes

f est convexe sur I si et seulement si pour tout $a \in I$, la fonction $\mathcal{T}_a : x \mapsto \frac{f(x) - f(a)}{x - a}$ est croissante sur $I \setminus \{a\}$ (« les pentes vont croissant »).

Si f est convexe sur I, on a l'inégalité des pentes. Pour a, b, c dans I tels que a < b < c, on a

$$\frac{f(b) - f(a)}{b - a} \leqslant \frac{f(c) - f(a)}{c - a} \leqslant \frac{f(c) - f(b)}{c - b}$$



Pente de $[AB] \leqslant$ Pente de $[AC] \leqslant$ Pente de [BC]

• Soit f une fonction dérivable sur un intervalle I.

f est convexe sur $I \Leftrightarrow f'$ est croissante sur I $\Leftrightarrow C_f$ est au-dessus de ses tangentes sur I

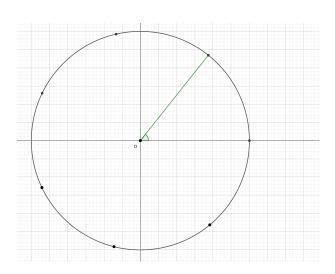
• Soit f une fonction de classe C^2 sur un intervalle I. f est convexe sur I si, et seulement si, $f'' \ge 0$ sur I.

4 Groupe des racines n-ième de l'unité

Il y a exactement n nombres complexes z solutions de l'équation $z^n=1$. Dit autrement, le polynôme X^n-1 admet exactement n racines dans $\mathbb C$. Ces n nombres constituent l'ensemble $\mathbb U_n$. On a

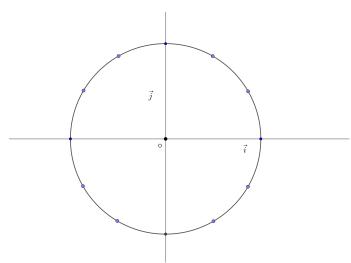
$$\mathbb{U}_n = \{\omega^k, k \in [0, n-1]\} \text{ où } \omega = \exp(\frac{2i\pi}{n})$$

Il faut savoir placer ces n nombres sur le cercle trigonométrique et avoir compris qui est le conjugué de chacun.



Factoriser $X^7 - 1$ dans $\mathbb{C}[X]$, dans $\mathbb{R}[X]$.

Factoriser X^8-1 dans $\mathbb{C}[X]$, dans $\mathbb{R}[X]$.



5 Morphismes

morphisme de groupe	$\varphi(x*y) = \varphi(x) \bot \varphi(y)$		
morphisme d'anneau	$\varphi(x+y) = \varphi(x) + \varphi(y)$	$\varphi(x \times y) = \varphi(x) \times \varphi(y)$	$\varphi(1) = 1$
morphisme d'espace vectoriel	$\varphi(x + \lambda y) = \varphi(x) + \lambda \varphi(y)$		
= application linéaire			
morphisme d'algèbre	$\varphi(x + \lambda y) = \varphi(x) + \lambda \varphi(y)$	$\varphi(x \times y) = \varphi(x) \times \varphi(y)$	$\varphi(1) = 1$

6 Rang

- On appelle matrice extraite de A une matrice B obtenue en supprimant certaines lignes et/ou colonnes de A. On a alors rg(B) ≤ rg(A).
 rg(A) est la taille maximale des matrices inversibles qu'on peut extraire de A. C'est donc la taille maximale des déterminants extraits non nuls.
- Le rang de A est la dimension de l'espace vectoriel engendré par ses vecteurs colonnes : rang(A) = dim Vect (C₁, C₂,..., C_p).
 Le rang de A est aussi le rang de ses vecteurs lignes (une matrice et sa transposée ont même rang).
 Les opérations élémentaires sur les lignes et colonnes de A (méthode du pivot de Gauss) transforment A en des matrices de même rang que A.
- Matrices équivalentes Soient A et $B \in \mathcal{M}_{n,p}(\mathbb{K})$. A et B sont équivalentes s'il existe $P \in GL_p(\mathbb{K})$ et $G \in GL_n(\mathbb{K})$ telles que $B = Q^{-1}AP$.

Deux matrices sont équivalentes si, et seulement si, on peut passer de l'une à l'autre par des opérations élémentaires sur les lignes.

Deux matrices sont équivalentes si, et seulement si, elles ont même rang. En notant r leur rang commun, elles sont équivalentes à $J_r = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$.

• Matrices semblables

Soit A et $B \in \mathcal{M}_n(\mathbb{K})$.

A et B sont semblables s'il existe $P \in GL_n(\mathbb{K})$ telle que $B = PAP^{-1}$.

Deux matrices sont semblables si, et seulement si, elles représentent le même endomorphisme dans des bases différentes. Elles ont donc même rang, même trace, même déterminant.