Programme des colles MP Semaine 2 : 23 au 28 septembre 2024

1 Cours

Réduction (1): tout le chapitre.

Séries numériques : tout le chapitre. Remarque : les familles sommables feront l'objet d'une autre khôlle.

2 Méthodes, exercices

- Tout exercice sur le chapitre Réduction (1).
- (Travail personnel) Révision des développements limités et équivalents!
- Savoir montrer qu'une série concrète converge par référence à une série du cours (Riemann, géométrique, série exponentielle) et un théorème de comparaison. Exemples : $\sum \ln(1 \frac{1}{n^2})$, $\sum \frac{\ln n}{n}$, $\sum \frac{\ln n}{n^{3/2}}$...
- Savoir effectuer des télescopages.
- Maîtriser la technique de comparaison série-intégrale avec une fonction monotone.

3 Questions de cours

- 1. (5/2 uniquement) Soit u un endomorphisme d'un espace vectoriel de dimension finie. u est nilpotent si, et seulement si, u est trigonalisable et 0 est sa seule valeur propre.
- 2. B.E.O. nº 90 (recopié au verso) (exercice semblable à un exercice du DS et questions 1. et 2. refaites en classe).
- 3. Démonstration du théorème des séries alternées, y compris le signe du reste R_n et une majoration de $|R_n|$.
- 4. En rédigeant une comparaison série-intégrale, donner un équivalent de $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}}$.
- 5. Montrer que $\sum_{k=1}^{n} \frac{1}{k} \sim \ln n$ avec le théorème de sommation d'une relation de comparaison, cas divergent.

Exemples d'exercices (en plus, pas spécifiquement au programme des khôlles, pour indication).

Exercice 87 (version plus difficile de l'exercice 90 du programme des khôlles autour des polynômes de Lagrange).

Exercice 1 (révisions de développements limités). Exercice 5 (séries, assez difficile).

Exercice 6 (théorème de d'Alembert, très intéressant à préparer à ce stade de l'année).

Exercice 7 (théorème d'équivalence des séries). Exercice 8 question 1 (démonstration du critère des séries alternées). Exercice 43 (suite récurrente d'ordre 1). Exercice 46 (séries).

B.E.O. CCINP no 90

K désigne le corps des réels ou celui des complexes.

Soient a_1, a_2, a_3 trois scalaires distincts donnés de \mathbb{K} .

- 1. Montrer que $\Phi: \mathbb{K}_2[X] \longrightarrow \mathbb{K}^3$ est un isomorphisme d'espaces vectoriels. $\longmapsto (P(a_1), P(a_2), P(a_3))$
- 2. On note (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et on pose $\forall k \in \{1, 2, 3\}, L_k = \Phi^{-1}(e_k)$.
 - (a) Justifier que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
 - (b) Exprimer les polynômes L_1, L_2 et L_3 en fonction de a_1, a_2 et a_3 .
- 3. Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .
- 4. **Application**: on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3), C(2,1).

Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

Un corrigé

- 1. Fait en classe.
- (a) Fait en classe.
 - (b) $L_1 \in \mathbb{R}_2[X]$ et vérifie $\Phi(L_1) = (1,0,0)$ i.e. $(L_1(a_1), L_1(a_2), L_1(a_3)) = (1,0,0)$.

Donc, comme a_2 et a_3 sont distincts, $(X - a_2)(X - a_3) | L_1$.

Or deg
$$L_1 \leq 2$$
, donc $\exists k \in \mathbb{K}$ tel que $L_1 = k(X - a_2)(X - a_3)$.
La valeur $L_1(a_1) = 1$ donne $k = \frac{1}{(a_1 - a_2)(a_1 - a_3)}$.

Donc
$$L_1 = \frac{(X - a_2)(X - a_3)}{(a_1 - a_2)(a_1 - a_3)}$$
.

Un raisonnement analogue donne $L_2 = \frac{(X - a_1)(X - a_3)}{(a_2 - a_1)(a_2 - a_3)}$ et $L_3 = \frac{(X - a_1)(X - a_2)}{(a_3 - a_1)(a_3 - a_2)}$.

- 3. (L_1, L_2, L_3) base de $\mathbb{K}_2[X]$ donc $\exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{K}^3$ tel que $P = \lambda_1 L_1 + \lambda_2 L_2 + \lambda_3 L_3$. L'évaluation en a_i donne $P(a_i) = \lambda_i$. Ainsi, $P = P(a_1)L_1 + P(a_2)L_2 + P(a_3)L_3$.
- 4. On pose $a_1 = 0$, $a_2 = 1$ et $a_3 = 2$. Ces trois réels sont bien distincts.

On cherche $P \in \mathbb{R}_2[X]$ tel que $(P(a_1), P(a_2), P(a_3)) = (1, 3, 1)$.

Par bijectivité de
$$\Phi$$
 et d'après 3. , l'unique solution est le polynôme $P=1.L_1+3.L_2+1.L_3$. On a $L_1=\frac{(X-1)(X-2)}{2},\ L_2=\frac{X(X-2)}{-1}$ et $L_3=\frac{X(X-1)}{2}$.

Donc $P = -2X^2 + 4X + 1$